Most cited article - PubMed ID 32646889
DUX4r, ZNF384r and PAX5-P80R mutated B-cell precursor acute lymphoblastic leukemia frequently undergo monocytic switch
We herein present an overview of the upcoming 5th edition of the World Health Organization Classification of Haematolymphoid Tumours focussing on lymphoid neoplasms. Myeloid and histiocytic neoplasms will be presented in a separate accompanying article. Besides listing the entities of the classification, we highlight and explain changes from the revised 4th edition. These include reorganization of entities by a hierarchical system as is adopted throughout the 5th edition of the WHO classification of tumours of all organ systems, modification of nomenclature for some entities, revision of diagnostic criteria or subtypes, deletion of certain entities, and introduction of new entities, as well as inclusion of tumour-like lesions, mesenchymal lesions specific to lymph node and spleen, and germline predisposition syndromes associated with the lymphoid neoplasms.
- MeSH
- Hematologic Neoplasms * MeSH
- Humans MeSH
- Lymphoma * pathology MeSH
- World Health Organization MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: The Human Cell Differentiation Molecules (HCDM) organizes Human Leukocyte Differentiation Antigen (HLDA) workshops to test and name clusters of antibodies that react with a specific antigen. These cluster of differentiation (CD) markers have provided the scientific community with validated antibody clones, consistent naming of targets and reproducible identification of leukocyte subsets. Still, quantitative CD marker expression profiles and benchmarking of reagents at the single-cell level are currently lacking. OBJECTIVE: To develop a flow cytometric procedure for quantitative expression profiling of surface antigens on blood leukocyte subsets that is standardized across multiple research laboratories. METHODS: A high content framework to evaluate the titration and reactivity of Phycoerythrin (PE)-conjugated monoclonal antibodies (mAbs) was created. Two flow cytometry panels were designed: an innate cell tube for granulocytes, dendritic cells, monocytes, NK cells and innate lymphoid cells (12-color) and an adaptive lymphocyte tube for naive and memory B and T cells, including TCRγδ+, regulatory-T and follicular helper T cells (11-color). The potential of these 2 panels was demonstrated via expression profiling of selected CD markers detected by PE-conjugated antibodies and evaluated using 561 nm excitation. RESULTS: Using automated data annotation and dried backbone reagents, we reached a robust workflow amenable to processing hundreds of measurements in each experiment in a 96-well plate format. The immunophenotyping panels enabled discrimination of 27 leukocyte subsets and quantitative detection of the expression of PE-conjugated CD markers of interest that could quantify protein expression above 400 units of antibody binding capacity. Expression profiling of 4 selected CD markers (CD11b, CD31, CD38, CD40) showed high reproducibility across centers, as well as the capacity to benchmark unique clones directed toward the same CD3 antigen. CONCLUSION: We optimized a procedure for quantitative expression profiling of surface antigens on blood leukocyte subsets. The workflow, bioinformatics pipeline and optimized flow panels enable the following: 1) mapping the expression patterns of HLDA-approved mAb clones to CD markers; 2) benchmarking new antibody clones to established CD markers; 3) defining new clusters of differentiation in future HLDA workshops.
- Keywords
- CD marker, cluster of differentiation (CD), expression profiling, flow cytometry, surfaceome,
- MeSH
- Antigens, Surface * metabolism MeSH
- Killer Cells, Natural metabolism MeSH
- Antigens, CD metabolism MeSH
- Leukocytes MeSH
- Humans MeSH
- Antibodies, Monoclonal MeSH
- Immunity, Innate * MeSH
- Workflow MeSH
- Flow Cytometry methods MeSH
- Reference Standards MeSH
- Reproducibility of Results MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Surface * MeSH
- Antigens, CD MeSH
- Antibodies, Monoclonal MeSH
Fusion of the ZNF384 gene as the 3' partner to several different 5' partner genes occurs recurrently in B-cell precursor acute lymphoblastic and mixed phenotype B/myeloid leukemia. These canonical fusions (ZNF384r) contain the complete ZNF384 coding sequence and are associated with a specific gene expression signature. Cases with this signature, but without canonical ZNF384 fusions (ZNF384r-like cases), have been described previously. Although some have been shown to harbor ZNF362 fusions, the primary aberrations remain unknown in a major proportion. We studied 3 patients with the ZNF384r signature and unknown primary genetic background and identified a previously unknown class of genetic aberration affecting the last exon of ZNF384 and resulting in disruption of the C-terminal portion of the ZNF384 protein. Importantly, in 2 cases, the ZNF384 aberration, indel, was missed during the bioinformatic analysis but revealed by the manual, targeted reanalysis. Two cases with the novel aberrations had a mixed (B/myeloid) immunophenotype commonly associated with canonical ZNF384 fusions. In conclusion, we present leukemia cases with a novel class of ZNF384 aberrations that phenocopy leukemia with ZNF384r. Therefore, we show that part of the so-called ZNF384r-like cases represent the same genetic subtype as leukemia with canonical ZNF384 fusions.
- MeSH
- Leukemia, Myeloid, Acute * genetics MeSH
- Immunophenotyping MeSH
- Humans MeSH
- Trans-Activators * genetics MeSH
- Transcription Factors MeSH
- Transcriptome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Trans-Activators * MeSH
- Transcription Factors MeSH
- ZNF384 protein, human MeSH Browser
- MeSH
- Child MeSH
- Adult MeSH
- Gene Rearrangement * MeSH
- Infant MeSH
- Humans MeSH
- Survival Rate MeSH
- Adolescent MeSH
- Young Adult MeSH
- Biomarkers, Tumor genetics MeSH
- Follow-Up Studies MeSH
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma genetics pathology MeSH
- Child, Preschool MeSH
- Prognosis MeSH
- Retrospective Studies MeSH
- Trans-Activators genetics MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Biomarkers, Tumor MeSH
- Trans-Activators MeSH
- ZNF384 protein, human MeSH Browser