Nejvíce citovaný článek - PubMed ID 32764739
Oral and vaginal microbiota in selected field mice of the genus Apodemus: a wild population study
Symbiotic microbial communities affect the host immune system and produce molecules contributing to the odor of an individual. In many mammalian species, saliva and vaginal fluids are important sources of chemical signals that originate from bacterial metabolism and may act as honest signals of health and reproductive status. In this study, we aimed to define oral and vaginal microbiomes and their dynamics throughout the estrous cycle in wild house mice. In addition, we analyzed a subset of vaginal proteomes and metabolomes to detect potential interactions with microbiomes. 16S rRNA sequencing revealed that both saliva and vagina are dominated by Firmicutes and Proteobacteria but differ at the genus level. The oral microbiome is more stable during the estrous cycle and most abundant bacteria belong to the genera Gemella and Streptococcus, while the vaginal microbiome shows higher bacterial diversity and dynamics during the reproductive cycle and is characterized by the dominance of Muribacter and Rodentibacter. These two genera cover around 50% of the bacterial community during estrus. Proteomic profiling of vaginal fluids revealed specific protein patterns associated with different estrous phases. Highly expressed proteins in estrus involve the keratinization process thus providing estrus markers (e.g., Hrnr) while some proteins are downregulated such as immune-related proteins that limit bacterial growth (Camp, Clu, Elane, Lyz2, and Ngp). The vaginal metabolome contains volatile compounds potentially involved in chemical communication, for example, ketones, aldehydes, and esters of carboxylic acids. Data integration of all three OMICs data sets revealed high correlations, thus providing evidence that microbiomes, host proteomes, and metabolomes may interact.IMPORTANCEOur data revealed dynamic changes in vaginal, but not salivary, microbiome composition during the reproductive cycle of wild mice. With multiple OMICs platforms, we provide evidence that changes in microbiota in the vaginal environment are accompanied by changes in the proteomic and metabolomics profiles of the host. This study describes the natural microbiota of wild mice and may contribute to a better understanding of microbiome-host immune system interactions during the hormonal and cellular changes in the female reproductive tract. Moreover, analysis of volatiles in the vaginal fluid shows particular substances that can be involved in chemical communication and reproductive behavior.
- Klíčová slova
- 16S RNA sequencing, Mus musculus, Pasteurellaceae, estrous cycle, estrus, microbiome, oral, proteome, saliva, vaginal,
- MeSH
- Bacteria genetika MeSH
- estrální cyklus MeSH
- myši MeSH
- proteiny intermediálních filament MeSH
- proteiny vázající vápník MeSH
- proteom * MeSH
- proteomika * MeSH
- RNA ribozomální 16S genetika MeSH
- rozmnožování MeSH
- savci MeSH
- vagina mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Hrnr protein, mouse MeSH Prohlížeč
- proteiny intermediálních filament MeSH
- proteiny vázající vápník MeSH
- proteom * MeSH
- RNA ribozomální 16S MeSH
Digestive and respiratory tracts are inhabited by rich bacterial communities that can vary between their different segments. In comparison with other bird taxa with developed caeca, parrots that lack caeca have relatively lower variability in intestinal morphology. Here, based on 16S rRNA metabarcoding, we describe variation in microbiota across different parts of parrot digestive and respiratory tracts both at interspecies and intraspecies levels. In domesticated budgerigar (Melopsittacus undulatus), we describe the bacterial variation across eight selected sections of respiratory and digestive tracts, and three non-destructively collected sample types (faeces, and cloacal and oral swabs). Our results show important microbiota divergence between the upper and lower digestive tract, but similarities between respiratory tract and crop, and also between different intestinal segments. Faecal samples appear to provide a better proxy for intestinal microbiota composition than the cloacal swabs. Oral swabs had a similar bacterial composition as the crop and trachea. For a subset of tissues, we confirmed the same pattern also in six different parrot species. Finally, using the faeces and oral swabs in budgerigars, we revealed high oral, but low faecal microbiota stability during a 3-week period mimicking pre-experiment acclimation. Our findings provide a basis essential for microbiota-related experimental planning and result generalisation in non-poultry birds.
- Klíčová slova
- Budgerigar, Domestic parakeet, Gastrointestinal tract microbiota, Microbiome composition, Psittaciformes, Symbiosis,
- MeSH
- Bacteria genetika MeSH
- dýchací soustava mikrobiologie MeSH
- mikrobiota * MeSH
- papouškovití * genetika MeSH
- RNA ribozomální 16S genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Arthroderma is the most diverse genus of dermatophytes, and its natural reservoir is considered to be soil enriched by keratin sources. During a study on the diversity of dermatophytes in wild small rodents in the Czech Republic, we isolated several strains of Arthroderma. To explore the diversity and ecological significance of these isolates from rodents (n = 29), we characterised the strains genetically (i.e., sequenced ITS, tubb and tef1α), morphologically, physiologically, and by conducting mating experiments. We then compared the rodent-derived strains to existing ITS sequence data from GenBank and the GlobalFungi Database to further investigate biogeography and the association of Arthroderma species with different types of environments. In total, eight Arthroderma species were isolated from rodents, including four previously described species (A. crocatum, A. cuniculi, A. curreyi, A. quadrifidum) and four new species proposed herein, i.e., A. rodenticum, A. simile, A. zoogenum and A. psychrophilum. The geographical distribution of these newly described species was not restricted to the Czech Republic nor rodents. Additional isolates were obtained from bats and other mammals, reptiles, and soil from Europe, North America, and Asia. Data mining showed that the genus has a diverse ecology, with some lineages occurring relatively frequently in soil, whereas others appeared to be more closely associated with live animals, as we observed in A. rodenticum. Low numbers of sequence reads ascribed to Arthroderma in soil show that the genus is rare in this environment, which supports the hypothesis that Arthroderma spp. are not soil generalists but rather strongly associated with animals and keratin debris. This is the first study to utilise existing metabarcoding data to assess biogeographical, ecological, and diversity patterns in dermatophytes. Citation: Moulíková Š, Kolařík M, Lorch JM, et al. 2022. Wild rodents harbour high diversity of Arthroderma. Persoonia 50: 27- 47. https://doi.org/10.3767/persoonia.2023.50.02.
- Klíčová slova
- Arthroderma, GlobalFungi, geophilic dermatophytes, mating type genes, new taxa, polyphasic taxonomy, wild rodents,
- Publikační typ
- časopisecké články MeSH
Major evolutionary transitions were always accompanied by genetic remodelling of phenotypic traits. For example, the vertebrate transition from water to land was accompanied by rapid evolution of olfactory receptors and by the expansion of genes encoding lipocalins, which - due to their transporting functions - represent an important interface between the external and internal organic world of an individual and also within an individual. Similarly, some lipocalin genes were lost along other genes when this transition went in the opposite direction leading, for example, to cetaceans. In terrestrial vertebrates, lipocalins are involved in the transport of lipophilic substances, chemical signalling, odour reception, antimicrobial defence and background odour clearance during ventilation. Many ancestral lipocalins have clear physiological functions across the vertebrate taxa while many other have - due to pleiotropic effects of their genes - multiple or complementary functions within the body homeostasis and development. The aim of this review is to deconstruct the physiological functions of lipocalins in light of current OMICs techniques. We concentrated on major findings in the house mouse in comparison to other model taxa (e.g., voles, humans, and birds) in which all or most coding genes within their genomes were repeatedly sequenced and their annotations are sufficiently informative.
- Klíčová slova
- LCN, lipocalins, major urinary protein, microbiota, mouse, odorant, odorant-binding protein, retinol-binding protein,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH