Most cited article - PubMed ID 32883638
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors
Influenza virus, an RNA virus of the Orthomyxoviridae family, is responsible for widespread seasonal epidemics that result in 3 to 5 million severe illnesses and more than half a million deaths annually. Given the persistent circulation of pandemic influenza variants and increasing resistance to available inhibitors, there is an urgent need for new antiviral drugs effective against various viral subtypes. Viral RNA-dependent RNA polymerase, essential for viral replication, has emerged as a promising drug target. The PA subunit with endonuclease function is especially interesting, as development of the highly potent baloxavir marboxil (Xofluza) validated its importance as a novel drug target. Flavonoids have long been studied for their anti-influenza activity but have only recently been recognized as endonuclease inhibitors. We previously identified luteolin and its glucoside derivate, orientin, as potent endonuclease inhibitors, with their binding illustrated by X-ray crystallography structures. Building on this, we employed a scaffold-hopping approach based on the luteolin structure to design structurally distinct compounds that resemble the flavonoid scaffold. Using an AlphaScreen binding assay, we identified 33 as a submicromolar PA inhibitor with low toxicity. We solved the crystal structure of the PA endonuclease-binding pseudoflavonoid 36, which has similar structure and inhibitory potency to 33. Furthermore, we identified 24, 33, 34 and 36 as inhibitors of influenza polymerase in a minireplicon luciferase reporter assay as well as inhibitors of live H1N1 virus infection in A549 human lung cells.
- Publication type
- Journal Article MeSH
In this work, we report the application of Buchwald-Hartwig amination for the preparation of new derivatives of quercetin and luteolin. Our investigation delves into the impact of aniline moiety on antioxidant, and anti-inflammatory activity, cytotoxicity, and the ability of flavonoids to modulate drug-resistance mechanisms in bacteria. The anti-inflammatory activity disappeared after the introduction of aniline into the flavonoids and the cytotoxicity remained low. Although the ability of quercetin and luteolin to modulate bacterial resistance to antibiotics has already been published, this is the first report on the molecular mechanism of this process. Both flavonoids attenuate erythromycin resistance by suppressing the ribosomal methyltransferase encoded by the ermA gene in Staphylococcus aureus. Notably, 4-(trifluoromethyl)anilino quercetin emerged as a potent ErmA inhibitor, likely by interacting with the RNA-binding pocket of ErmA. Additionally, both 4-fluoroanilino derivatives effectively impended the staphylococcal efflux system. All the prepared derivatives exhibited superior activity in modulating gentamicin resistance in S. aureus compared to the parent compounds. Overall, the incorporation of substituted anilines into the flavonoid core significantly enhanced its ability to combat multidrug resistance in bacteria.
- Publication type
- Journal Article MeSH
The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located in the enzyme's catalytic site. Previously, we screened a panel of flavonoids for PA inhibition and found luteolin and its C-glucoside orientin to be potent inhibitors. Through structural analysis, we identified the presence of a 3',4'-dihydroxyphenyl moiety as a crucial feature for sub-micromolar inhibitory activity. Here, we report results from a subsequent investigation exploring structural changes at the C-7 and C-8 positions of luteolin. Experimental IC50 values were determined by AlphaScreen technology. The most potent inhibitors were C-8 derivatives with inhibitory potencies comparable to that of luteolin. Bio-isosteric replacement of the C-7 hydroxyl moiety of luteolin led to a series of compounds with one-order-of-magnitude-lower inhibitory potencies. Using X-ray crystallography, we solved structures of the wild-type PA-N-terminal domain and its I38T mutant in complex with orientin at 1.9 Å and 2.2 Å resolution, respectively.
- Keywords
- Mannich reaction, RNA polymerase, bio-isosterism, cross-coupling, endonuclease inhibitor, flavonoids, influenza,
- MeSH
- Antiviral Agents chemical synthesis pharmacology MeSH
- Endonucleases antagonists & inhibitors MeSH
- Catalytic Domain drug effects MeSH
- Luteolin chemical synthesis pharmacology MeSH
- Orthomyxoviridae drug effects MeSH
- Viral Proteins antagonists & inhibitors MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antiviral Agents MeSH
- Endonucleases MeSH
- Luteolin MeSH
- Viral Proteins MeSH