Nejvíce citovaný článek - PubMed ID 19194459
The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located in the enzyme's catalytic site. Previously, we screened a panel of flavonoids for PA inhibition and found luteolin and its C-glucoside orientin to be potent inhibitors. Through structural analysis, we identified the presence of a 3',4'-dihydroxyphenyl moiety as a crucial feature for sub-micromolar inhibitory activity. Here, we report results from a subsequent investigation exploring structural changes at the C-7 and C-8 positions of luteolin. Experimental IC50 values were determined by AlphaScreen technology. The most potent inhibitors were C-8 derivatives with inhibitory potencies comparable to that of luteolin. Bio-isosteric replacement of the C-7 hydroxyl moiety of luteolin led to a series of compounds with one-order-of-magnitude-lower inhibitory potencies. Using X-ray crystallography, we solved structures of the wild-type PA-N-terminal domain and its I38T mutant in complex with orientin at 1.9 Å and 2.2 Å resolution, respectively.
- Klíčová slova
- Mannich reaction, RNA polymerase, bio-isosterism, cross-coupling, endonuclease inhibitor, flavonoids, influenza,
- MeSH
- antivirové látky chemická syntéza farmakologie MeSH
- endonukleasy antagonisté a inhibitory MeSH
- katalytická doména účinky léků MeSH
- luteolin chemická syntéza farmakologie MeSH
- Orthomyxoviridae účinky léků MeSH
- virové proteiny antagonisté a inhibitory MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky MeSH
- endonukleasy MeSH
- luteolin MeSH
- virové proteiny MeSH
Influenza A virus (IAV) encodes a polymerase composed of three subunits: PA, with endonuclease activity, PB1 with polymerase activity and PB2 with host RNA five-prime cap binding site. Their cooperation and stepwise activation include a process called cap-snatching, which is a crucial step in the IAV life cycle. Reproduction of IAV can be blocked by disrupting the interaction between the PB2 domain and the five-prime cap. An inhibitor of this interaction called pimodivir (VX-787) recently entered the third phase of clinical trial; however, several mutations in PB2 that cause resistance to pimodivir were observed. First major mutation, F404Y, causing resistance was identified during preclinical testing, next the mutation M431I was identified in patients during the second phase of clinical trials. The mutation H357N was identified during testing of IAV strains at Centers for Disease Control and Prevention. We set out to provide a structural and thermodynamic analysis of the interactions between cap-binding domain of PB2 wild-type and PB2 variants bearing these mutations and pimodivir. Here we present four crystal structures of PB2-WT, PB2-F404Y, PB2-M431I and PB2-H357N in complex with pimodivir. We have thermodynamically analysed all PB2 variants and proposed the effect of these mutations on thermodynamic parameters of these interactions and pimodivir resistance development. These data will contribute to understanding the effect of these missense mutations to the resistance development and help to design next generation inhibitors.
- Klíčová slova
- VX-787, antivirals, influenza A polymerase, pimodivir, resistance,
- MeSH
- krystalografie rentgenová MeSH
- kvantová teorie MeSH
- molekulární modely MeSH
- mutace genetika MeSH
- mutantní proteiny metabolismus MeSH
- podjednotky proteinů antagonisté a inhibitory chemie metabolismus MeSH
- proteinové domény MeSH
- pyridiny chemie farmakologie MeSH
- pyrimidiny chemie farmakologie MeSH
- pyrroly chemie farmakologie MeSH
- RNA-dependentní RNA-polymerasa antagonisté a inhibitory chemie metabolismus MeSH
- termodynamika MeSH
- virová léková rezistence účinky léků MeSH
- virové proteiny antagonisté a inhibitory chemie metabolismus MeSH
- virus chřipky A účinky léků enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mutantní proteiny MeSH
- PB2 protein, Influenzavirus A MeSH Prohlížeč
- pimodivir MeSH Prohlížeč
- podjednotky proteinů MeSH
- pyridiny MeSH
- pyrimidiny MeSH
- pyrroly MeSH
- RNA-dependentní RNA-polymerasa MeSH
- virové proteiny MeSH
The threat of a worldwide influenza pandemic has greatly increased over the past decade with the emergence of highly virulent avian influenza strains. The increased frequency of drug-resistant influenza strains against currently available antiviral drugs requires urgent development of new strategies for antiviral therapy, too. The research in the field of therapeutic peptides began to develop extensively in the second half of the 20(th) century. Since then, the mechanisms of action for several peptides and their antiviral prospect received large attention due to the global threat posed by viruses. Here, we discussed the therapeutic properties of peptides used in influenza treatment. Peptides with antiviral activity against influenza can be divided into three main groups. First, entry blocker peptides such as a Flupep that interact with influenza hemagglutinin, block its binding to host cells and prevent viral fusion. Second, several peptides display virucidal activity, disrupting viral envelopes, e.g., Melittin. Finally, a third set of peptides interacts with the viral polymerase complex and act as viral replication inhibitors such as PB1 derived peptides. Here, we present a review of the current literature describing the antiviral activity, mechanism and future therapeutic potential of these influenza antiviral peptides.
- Klíčová slova
- cationic peptides, hemagglutinin, influenza virus, membrane fusion, neuraminidase, viral replication,
- MeSH
- antivirové látky farmakologie terapeutické užití MeSH
- chřipka lidská farmakoterapie MeSH
- infekce viry z čeledi Orthomyxoviridae farmakoterapie MeSH
- internalizace viru účinky léků MeSH
- klinické zkoušky jako téma MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- objevování léků trendy MeSH
- Orthomyxoviridae účinky léků fyziologie MeSH
- peptidy farmakologie terapeutické užití MeSH
- replikace viru účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antivirové látky MeSH
- peptidy MeSH