Ependymal cells, a dormant population of ciliated progenitors found within the central canal of the spinal cord, undergo significant alterations after spinal cord injury (SCI). Understanding the molecular events that induce ependymal cell activation after SCI represents the first step toward controlling the response of the endogenous regenerative machinery in damaged tissues. This response involves the activation of specific signaling pathways in the spinal cord that promotes self-renewal, proliferation, and differentiation. We review our current understanding of the signaling pathways and molecular events that mediate the SCI-induced activation of ependymal cells by focusing on the roles of some cell adhesion molecules, cellular membrane receptors, ion channels (and their crosstalk), and transcription factors. An orchestrated response regulating the expression of receptors and ion channels fine-tunes and coordinates the activation of ependymal cells after SCI or cell transplantation. Understanding the major players in the activation of ependymal cells may help us to understand whether these cells represent a critical source of cells contributing to cellular replacement and tissue regeneration after SCI. A more complete understanding of the role and function of individual signaling pathways in endogenous spinal cord progenitors may foster the development of novel targeted therapies to induce the regeneration of the injured spinal cord.
- Keywords
- Activation, Ependymal cells, Regeneration, Spinal cord injury,
- MeSH
- Ependyma metabolism MeSH
- Ion Channels metabolism MeSH
- Humans MeSH
- Spinal Cord MeSH
- Neuroglia metabolism MeSH
- Spinal Cord Injuries * therapy metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Ion Channels MeSH
Spinal cord injury is a devastating medical condition with no effective treatment. One approach to SCI treatment may be provided by stem cells (SCs). Studies have mainly focused on the transplantation of exogenous SCs, but the induction of endogenous SCs has also been considered as an alternative. While the differentiation potential of neural stem cells in the brain neurogenic regions has been known for decades, there are ongoing debates regarding the multipotent differentiation potential of the ependymal cells of the central canal in the spinal cord (SCECs). Following spinal cord insult, SCECs start to proliferate and differentiate mostly into astrocytes and partly into oligodendrocytes, but not into neurons. However, there are several approaches concerning how to increase neurogenesis in the injured spinal cord, which are discussed in this review. The potential treatment approaches include drug administration, the reduction of neuroinflammation, neuromodulation with physical factors and in vivo reprogramming.
- Keywords
- astrocytes, ependymal stem cells, growth factors, neurogenesis, neuroinflammation, physical factors, reprogramming, spinal canal, spinal cord injury, valproic acid,
- MeSH
- Cell Differentiation MeSH
- Humans MeSH
- Spinal Cord MeSH
- Neural Stem Cells * MeSH
- Neurogenesis MeSH
- Neurons MeSH
- Spinal Cord Injuries * therapy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH