Most cited article - PubMed ID 33078182
Binding of divalent cations to acetate: molecular simulations guided by Raman spectroscopy
Salt bridges are ionic interactions that are of great importance in protein recognition. However, their structural description using X-ray crystallography or NMR may be inconclusive. Classical molecular dynamics (MD) used for the interpretation neglects electronic polarization, which results in artifactual overbinding. Here, we resolve the problem via charge scaling, which accounts for electronic polarization in a mean-field way. We study three salt bridges in insulin analogue. New NMR ensembles are generated via NOE-restrained MD using ff19SB and CHARMM36m force fields and the scaled-charge prosECCo75. Tens of μs of unrestrained MD show in a statistically converged manner that ff19SB induces a non-native salt bridge. This behavior is quantified via umbrella sampling of salt bridge dissociation, which indicates a rather high strength of up to 4 and 5 kcal mol-1 for CHARMM36m and ff19SB, respectively. In contrast, prosECCo75 gives a biologically reasonable dissociation barrier of 1 kcal mol-1. Our results indicate that a physically justified description of charge-charge interactions within a nonpolarizable MD framework reliably describes aqueous biomolecular systems.
- Publication type
- Journal Article MeSH
Glycosaminoglycans (GAGs) are negatively charged polysaccharides found on cell surfaces, where they regulate transport pathways of foreign molecules toward the cell. The structural and functional diversity of GAGs is largely attributed to varied sulfation patterns along the polymer chains, which makes understanding their molecular recognition mechanisms crucial. Molecular dynamics (MD) simulations, thanks to their unmatched microscopic resolution, have the potential to be a reference tool for exploring the patterns responsible for biologically relevant interactions. However, the capability of molecular dynamics force fields used in biosimulations to accurately capture sulfation-specific interactions is not well established, partly due to the intrinsic properties of GAGs that pose challenges for most experimental techniques. In this work, we evaluate the performance of molecular dynamics force fields for sulfated GAGs by studying ion pairing of Ca2+ to sulfated moieties─N-methylsulfamate and methylsulfate─that resemble N- and O-sulfation found in GAGs, respectively. We tested available nonpolarizable (CHARMM36 and GLYCAM06) and explicitly polarizable (Drude and AMOEBA) force fields, and derived new implicitly polarizable models through charge scaling (prosECCo75 and GLYCAM-ECC75) that are consistent with our developed "charge-scaling" framework. The calcium-sulfamate/sulfate interaction free energy profiles obtained with the tested force fields were compared against reference ab initio molecular dynamics (AIMD) simulations, which serve as a robust alternative to experiments. AIMD simulations indicate that the preferential Ca2+ binding mode to sulfated GAG groups is solvent-shared pairing. Only our scaled-charge models agree satisfactorily with the AIMD data, while all other force fields exhibit poorer agreement, sometimes even qualitatively. Surprisingly, even explicitly polarizable force fields display a notable disagreement with the AIMD data, likely attributed to difficulties in their optimization and possible inherent limitations in depicting high-charge-density ion interactions accurately. Finally, the underperforming force fields lead to unrealistic aggregation of sulfated saccharides, which qualitatively disagrees with our understanding of the soft glycocalyx environment. Our results highlight the importance of accurately treating electronic polarization in MD simulations of sulfated GAGs and caution against over-reliance on currently available models without thorough validation and optimization.
- MeSH
- Glycosaminoglycans * chemistry MeSH
- Sulfonic Acids chemistry MeSH
- Molecular Dynamics Simulation * MeSH
- Sulfates * chemistry MeSH
- Static Electricity * MeSH
- Calcium chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Glycosaminoglycans * MeSH
- Sulfonic Acids MeSH
- Sulfates * MeSH
- sulfamic acid MeSH Browser
- Calcium MeSH