Most cited article - PubMed ID 33081637
The efficiency of insulin production and its content in insulin-expressing model β-cells correlate with their Zn2+ levels
Preptin, a 34-amino acid peptide derived from pro-IGF2, is believed to influence various physiological processes, including insulin secretion and the regulation of bone metabolism. Despite its recognized involvement, the precise physiological role of preptin remains enigmatic. To address this knowledge gap, we synthesized 16 analogs of preptin, spanning a spectrum from full-length forms to fragments, and conducted comprehensive comparative activity evaluations alongside native human, mouse and rat preptin. Our study aimed to elucidate the physiological role of preptin. Contrary to previous indications of broad biological activity, our thorough analyses across diverse cell types revealed no significant biological activity associated with preptin or its analogs. This suggests that the associations of preptin with various diseases or tissue-specific abundance fluctuations may be influenced by factors beyond preptin itself, such as higher levels of IGF2 or IGF2 proforms present in tissues. In conclusion, our findings challenge the conventional notion of preptin as an isolated biologically active molecule and underscore the complexity of its interactions within biological systems. Rather than acting independently, the observed effects of preptin may arise from experimental conditions, elevated preptin concentrations, or interactions with related molecules such as IGF2.
- MeSH
- Insulin-Like Growth Factor II * metabolism MeSH
- Insulin metabolism MeSH
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Peptide Fragments metabolism MeSH
- Protein Precursors metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- IGF2 protein, human MeSH Browser
- Insulin-Like Growth Factor II * MeSH
- Insulin MeSH
- Peptide Fragments MeSH
- preptin MeSH Browser
- Protein Precursors MeSH
Insulin is stored in vivo inside the pancreatic β-cell insulin secretory granules. In vitro studies have led to an assumption that high insulin and Zn2+ concentrations inside the pancreatic β-cell insulin secretory granules should promote insulin crystalline state in the form of Zn2+-stabilized hexamers. Electron microscopic images of thin sections of the pancreatic β-cells often show a dense, regular pattern core, suggesting the presence of insulin crystals. However, the structural features of the storage forms of insulin in native preparations of secretory granules are unknown, because of their small size, fragile character and difficult handling. We isolated and investigated the secretory granules from MIN6 cells under near-native conditions, using cryo-electron microscopic (Cryo-EM) techniques. The analysis of these data from multiple intra-granular crystals revealed two different rhomboidal crystal lattices. The minor lattice has unit cell parameters (a ≃ b ≃ 84.0 Å, c ≃ 35.2 Å), similar to in vitro crystallized human 4Zn2+-insulin hexamer, whereas the largely prevalent unit cell has more than double c-axis (a ≃ b ≃ c ≃ 96.5 Å) that probably corresponds to two or three insulin hexamers in the asymmetric unit. Our experimental data show that insulin can be present in pancreatic MIN6 cell granules in a microcrystalline form, probably consisting of 4Zn2+-hexamers of this hormone.
- Keywords
- crystallization in vivo, electron microscopy, insulin secretion, peptide hormone, secretory granules, subcellular vesicle,
- MeSH
- Insulin-Secreting Cells * MeSH
- Microscopy, Electron MeSH
- Insulin MeSH
- Islets of Langerhans * MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Insulin MeSH
We adapted a radioligand receptor binding assay for measuring insulin levels in unknown samples. The assay enables rapid and accurate determination of insulin concentrations in experimental samples, such as from insulin-secreting cells. The principle of the method is based on the binding competition of insulin in a measured sample with a radiolabeled insulin for insulin receptor (IR) in IM-9 cells. Both key components, radiolabeled insulin and IM-9 cells, are commercially available. The IR binding assay was used to determine unknown amounts of insulin secreted by MIN6 β cell line after stimulation with glucose, arginine, ornithine, dopamine, and serotonin. The experimental data obtained by the IR binding assay were compared to the results determined by RIA kits and both methods showed a very good agreement of results. We observed the stimulation of glucose-induced insulin secretion from MIN6 cells by arginine, weaker stimulation by ornithine, but inhibitory effects of dopamine. Serotonin effects were either stimulatory or inhibitory, depending on the concentration of serotonin used. The results will require further investigation. The study also clearly revealed advantages of the IR binding assay that allows the measuring of a higher throughput of measured samples, with a broader range of concentrations than in the case of RIA kits. The IR binding assay can provide an alternative to standard RIA and ELISA assays for the determination of insulin levels in experimental samples and can be especially useful in scientific laboratories studying insulin production and secretion by β cells and searching for new modulators of insulin secretion.
- Keywords
- Binding assay, Insulin receptor, Insulin secretion, Radioligand, Secretagogue, β Cells,
- MeSH
- Arginine metabolism MeSH
- Insulin-Secreting Cells metabolism MeSH
- Cell Line MeSH
- Dopamine metabolism MeSH
- Glucose metabolism MeSH
- Insulin analysis metabolism MeSH
- Rats MeSH
- Islets of Langerhans metabolism MeSH
- Humans MeSH
- Mice MeSH
- Ornithine metabolism MeSH
- Rats, Wistar MeSH
- Radioimmunoassay methods MeSH
- Radioligand Assay methods MeSH
- Insulin Secretion * MeSH
- Serotonin metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Arginine MeSH
- Dopamine MeSH
- Glucose MeSH
- Insulin MeSH
- Ornithine MeSH
- Serotonin MeSH