Most cited article - PubMed ID 33242645
Antibiofilm agent pterostilbene is able to enhance antibiotics action against Staphylococcus epidermidis
The increasing risk of antibiotic failure in the treatment of Pseudomonas aeruginosa infections is largely related to the production of a wide range of virulence factors. The use of non-thermal plasma (NTP) is a promising alternative to antimicrobial treatment. Nevertheless, there is still a lack of knowledge about the effects of NTP on the virulence factors production. We evaluated the ability of four NTP-affected P. aeruginosa strains to re-form biofilm and produce Las-B elastase, proteases, lipases, haemolysins, gelatinase or pyocyanin. Highly strains-dependent inhibitory activity of NTP against extracellular virulence factors production was observed. Las-B elastase activity was reduced up to 82% after 15-min NTP treatment, protease activity and pyocyanin production by biofilm cells was completely inhibited after 60 min, in contrast to lipases and gelatinase production, which remained unchanged. However, for all strains tested, a notable reduction in biofilm re-development ability was depicted using spinning disc confocal microscopy. In addition, NTP exposure of mature biofilms caused disruption of biofilm cells and their dispersion into the environment, as shown by transmission electron microscopy. This appears to be a key step that could help overcome the high resistance of P. aeruginosa and its eventual elimination, for example in combination with antibiotics still highly effective against planktonic cells.
- Keywords
- antivirulence factors, biofilm disruption, cold atmospheric plasma (CAP), combined therapy, haemolytic activity,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Biofilms MeSH
- Endopeptidases pharmacology MeSH
- Virulence Factors MeSH
- Hemolysin Proteins pharmacology MeSH
- Humans MeSH
- Pancreatic Elastase MeSH
- Plankton MeSH
- Plasma Gases * pharmacology MeSH
- Peptide Hydrolases MeSH
- Pseudomonas Infections * MeSH
- Pseudomonas aeruginosa MeSH
- Pyocyanine MeSH
- Quorum Sensing MeSH
- Gelatinases pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Endopeptidases MeSH
- Virulence Factors MeSH
- Hemolysin Proteins MeSH
- Pancreatic Elastase MeSH
- Plasma Gases * MeSH
- Peptide Hydrolases MeSH
- Pyocyanine MeSH
- Gelatinases MeSH
Pseudomonas aeruginosa is a gram-negative bacterium capable of forming persistent biofilms that are extremely difficult to eradicate. The species is most infamously known due to complications in cystic fibrosis patients. The high mortality of cystic fibrosis is caused by P. aeruginosa biofilms occurring in pathologically overly mucous lungs, which are the major cause facilitating the organ failure. Due to Pseudomonas biofilm-associated infections, remarkably high doses of antibiotics must be administered, eventually contributing to the development of antibiotic resistance. Nowadays, multidrug resistant P. aeruginosa is one of the most terrible threats in medicine, and the search for novel antimicrobial drugs is of the utmost importance. We have studied the effect of low molecular weight chitosan (LMWCH) on various stages of P. aeruginosa ATCC 10145 biofilm formation and eradication, as well as on production of other virulence factors. LMWCH is a well-known naturally occurring agent with a vast antimicrobial spectrum, which has already found application in various fields of medicine and industry. LMWCH at a concentration of 40 mg/L was able to completely prevent biofilm formation. At a concentration of 60 mg/L, this agent was capable to eradicate already formed biofilm in most studied times of addition (2-12 h of cultivation). LMWCH (50 mg/L) was also able to suppress pyocyanin production when added 2 and 4 h after cultivation. The treatment resulted in reduced formation of cell clusters. LMWCH was proved to be an effective antibiofilm agent worth further clinical research with the potential to become a novel drug for the treatment of P. aeruginosa infections.
- Keywords
- Biofilm, Eradication, Formation, Low molecular weight chitosan, Pseudomonas aeruginosa, Virulence factors,
- MeSH
- Anti-Bacterial Agents pharmacology therapeutic use MeSH
- Biofilms MeSH
- Chitosan * pharmacology MeSH
- Cystic Fibrosis * MeSH
- Virulence Factors MeSH
- Humans MeSH
- Pseudomonas Infections * drug therapy MeSH
- Pseudomonas aeruginosa MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Chitosan * MeSH
- Virulence Factors MeSH
The emergence of antibiotic resistance in opportunistic pathogens represents a huge problem, the solution for which may be a treatment with a combination of multiple antimicrobial agents. Sodium salt of cobalt bis-dicarbollide (COSAN.Na) is one of the very stable, low-toxic, amphiphilic boron-rich sandwich complex heteroboranes. This compound has a wide range of potential applications in the biological sciences due to its antitumor, anti-HIV-1, antimicrobial and antibiofilm activity. Our study confirmed the ability of COSAN.Na (in the concentration range 0.2-2.48 µg/mL) to enhance tetracycline, erythromycin, and vancomycin action towards Staphylococcus epidermidis planktonic growth with an additive or synergistic effect (e.g., the combination of 1.24 µg/mL COSAN.Na and 6.5 µg/mL TET). The effective inhibitory concentration of antibiotics was reduced up to tenfold most efficiently in the case of tetracycline (from 65 to 6.5 µg/mL). In addition, strong effect of COSAN.Na on disruption of the cell envelopes was determined using propidium iodide uptake measurement and further confirmed by transmission electron microscopy. The combination of amphiphilic COSAN.Na with antibiotics can therefore be considered a promising way to overcome antibiotic resistance in Gram-positive cocci.
- Keywords
- Gram-positive bacterium, additive effect, antibiotics, antimicrobial activity, carborane, erythromycin, metallacarboranes, synergistic effect, tetracycline, vancomycin,
- Publication type
- Journal Article MeSH