Nejvíce citovaný článek - PubMed ID 32613312
Natural antioxidant pterostilbene as an effective antibiofilm agent, particularly for gram-positive cocci
INTRODUCTION: Candida albicans is a significant human pathogen with the ability to form biofilms, a critical factor in its resistance to antifungal treatments. This study aims to evaluate the antifungal activity and biofilm inhibition potential of Tea Tree Oil (TTO) derived from Melaleuca alternifolia cultivated in Vietnam. METHODS: The antifungal activity of TTO was assessed by determining the Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) using broth dilution methods. The experiments were conducted on C. albicans in both planktonic and biofilm states across concentrations ranging from 0.1 μL/mL to 10 μL/mL. RESULTS: TTO demonstrated significant antifungal efficacy, with a MIC of 0.1 μL/mL (∼91.217 μg/mL) and an MFC of 10 μL/mL (∼9121.7 μg/mL). It effectively inhibited biofilm formation with a recorded MBIC of 2 μL/mL (∼1824.34 μg/mL). However, MBEC values were not determinable as the concentrations tested did not achieve the eradication of more than 50% of mature biofilm within the experimental conditions. DISCUSSION: These findings highlight TTO as a promising natural antifungal agent with strong biofilm-inhibitory properties. However, its limited efficacy in eradicating mature biofilms underscores the need for further studies, potentially involving higher concentrations or synergistic combinations with conventional antifungal agents.
Boswellic acids are biologically active pentacyclic terpenoid compounds derived from Boswellia sp. plants. Extracts containing these acids have a number of positive effects on human health, especially in the treatment of inflammation, arthritis, or asthma. With increasing resistance to common antibiotics, boswellic acid-containing extracts could serve as an alternative or work in synergy with commonly available preparations. This study aims to determine the effect of boswellic acids on suspension cells and biofilms of Staphylococcus epidermidis, Enterococcus faecalis, and Escherichia coli. The antimicrobial and antibiofilm effect found was compared with commonly available antibiotics to control these undesirable microorganisms. The synergistic effect of boswellic acids and common antibiotics on the growth of these microorganisms was also determined. All tested microorganisms showed a positive additive effect of antibiotics and boswellic acid extract. The most significant effect was found in Enterococcus faecalis ATCC 29212 in a combination of 0.2 × MIC80 erythromycin (0.2 mg/L) and 0.8 × MIC80 boswellic acid extract (16 mg/L).
- Klíčová slova
- FIC, antibacterial, antibiotic, bacterial biofilm, boswellic acid, microbial biofilm,
- MeSH
- antibakteriální látky farmakologie MeSH
- biofilmy MeSH
- Boswellia * MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- rostlinné extrakty škodlivé účinky MeSH
- triterpeny * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- boswellic acid MeSH Prohlížeč
- rostlinné extrakty MeSH
- triterpeny * MeSH
Pseudomonas aeruginosa is a gram-negative bacterium capable of forming persistent biofilms that are extremely difficult to eradicate. The species is most infamously known due to complications in cystic fibrosis patients. The high mortality of cystic fibrosis is caused by P. aeruginosa biofilms occurring in pathologically overly mucous lungs, which are the major cause facilitating the organ failure. Due to Pseudomonas biofilm-associated infections, remarkably high doses of antibiotics must be administered, eventually contributing to the development of antibiotic resistance. Nowadays, multidrug resistant P. aeruginosa is one of the most terrible threats in medicine, and the search for novel antimicrobial drugs is of the utmost importance. We have studied the effect of low molecular weight chitosan (LMWCH) on various stages of P. aeruginosa ATCC 10145 biofilm formation and eradication, as well as on production of other virulence factors. LMWCH is a well-known naturally occurring agent with a vast antimicrobial spectrum, which has already found application in various fields of medicine and industry. LMWCH at a concentration of 40 mg/L was able to completely prevent biofilm formation. At a concentration of 60 mg/L, this agent was capable to eradicate already formed biofilm in most studied times of addition (2-12 h of cultivation). LMWCH (50 mg/L) was also able to suppress pyocyanin production when added 2 and 4 h after cultivation. The treatment resulted in reduced formation of cell clusters. LMWCH was proved to be an effective antibiofilm agent worth further clinical research with the potential to become a novel drug for the treatment of P. aeruginosa infections.
- Klíčová slova
- Biofilm, Eradication, Formation, Low molecular weight chitosan, Pseudomonas aeruginosa, Virulence factors,
- MeSH
- antibakteriální látky farmakologie terapeutické užití MeSH
- biofilmy MeSH
- chitosan * farmakologie MeSH
- cystická fibróza * MeSH
- faktory virulence MeSH
- lidé MeSH
- pseudomonádové infekce * farmakoterapie MeSH
- Pseudomonas aeruginosa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- chitosan * MeSH
- faktory virulence MeSH
The emergence of antibiotic resistance in opportunistic pathogens represents a huge problem, the solution for which may be a treatment with a combination of multiple antimicrobial agents. Sodium salt of cobalt bis-dicarbollide (COSAN.Na) is one of the very stable, low-toxic, amphiphilic boron-rich sandwich complex heteroboranes. This compound has a wide range of potential applications in the biological sciences due to its antitumor, anti-HIV-1, antimicrobial and antibiofilm activity. Our study confirmed the ability of COSAN.Na (in the concentration range 0.2-2.48 µg/mL) to enhance tetracycline, erythromycin, and vancomycin action towards Staphylococcus epidermidis planktonic growth with an additive or synergistic effect (e.g., the combination of 1.24 µg/mL COSAN.Na and 6.5 µg/mL TET). The effective inhibitory concentration of antibiotics was reduced up to tenfold most efficiently in the case of tetracycline (from 65 to 6.5 µg/mL). In addition, strong effect of COSAN.Na on disruption of the cell envelopes was determined using propidium iodide uptake measurement and further confirmed by transmission electron microscopy. The combination of amphiphilic COSAN.Na with antibiotics can therefore be considered a promising way to overcome antibiotic resistance in Gram-positive cocci.
- Klíčová slova
- Gram-positive bacterium, additive effect, antibiotics, antimicrobial activity, carborane, erythromycin, metallacarboranes, synergistic effect, tetracycline, vancomycin,
- Publikační typ
- časopisecké články MeSH
The ever-growing range of possible applications of nanoparticles requires their mass production. However, there are problems resulting from the prevalent methods of nanoparticle production; physico-chemical routes of nanoparticle synthesis are not very environmentally friendly nor cost-effective. Due to this, the scientific community started exploring new methods of nanoparticle assembly with the aid of biological agents. In this study, ethanolic Vitis vinifera cane extract combined with silver nitrate was used to produce silver nanoparticles. These were subsequently characterized using UV-visible (UV-Vis) spectrometry, transmission electron microscopy, and dynamic light-scattering analysis. The antimicrobial activity of produced nanoparticles was tested against the planktonic cells of five strains of Gram-negative bacterium Pseudomonas aeruginosa (PAO1, ATCC 10145, ATCC 15442, DBM 3081, and DBM 3777). After that, bactericidal activity was assessed using solid medium cultivation. In the end, nanoparticles' inhibitory effect on adhering cells was analyzed by measuring changes in metabolic activity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay-MTT). Our results confirmed that ethanolic Vitis vinifera cane extract is capable of mediating silver nanoparticle production; synthesis was conducted using 10% of extract and 1 mM of silver nitrate. The silver nanoparticles' Z-average was 68.2 d nm, and their zeta potential was -30.4 mV. These silver nanoparticles effectively inhibited planktonic cells of all P. aeruginosa strains in concentrations less than 5% v/v and inhibited biofilm formation in concentrations less than 6% v/v. Moreover, minimum bactericidal concentration was observed to be in the range of 10-16% v/v. According to the results in this study, the use of wine agriculture waste is an ecological and economical method for the production of silver nanoparticles exhibiting significant antimicrobial properties.
- Klíčová slova
- antimicrobial activity, biosynthesis, nanoparticles, plant extract,
- Publikační typ
- časopisecké články MeSH
Vitis vinifera canes are waste material of grapevine pruning and thus represent cheap source of high-value polyphenols. In view of the fact that resistance of many pathogenic microorganisms to antibiotics is a growing problem, the antimicrobial activity of plant polyphenols is studied as one of the possible approaches. We have investigated the total phenolic content, composition, antioxidant activity, and antifungal activity against Candida biofilm of an extract from winter canes and a commercially available extract from blue grapes. Light microscopy and confocal microscopy imaging as well as crystal violet staining were used to quantify and visualize the biofilm. We found a decrease in cell adhesion to the surface depending on the concentration of resveratrol in the cane extract. The biofilm formation was observed as metabolic activity of Candida albicans, Candida parapsilosis and Candida krusei biofilm cells and the minimum biofilm inhibitory concentrations were determined. The highest inhibition of metabolic activity was observed in Candida albicans biofilm after treatment with the cane extract (30 mg/L) and blue grape extract (50 mg/L). The composition of cane extract was analyzed and found to be comparatively different from blue grape extract. In addition, the content of total phenolic groups in cane extract was three-times higher (12.75 gGA/L). The results showed that cane extract was more effective in preventing biofilm formation than blue grape extract and winter canes have proven to be a potential source of polyphenols for antimicrobial and antibiofilm treatment.
- Klíčová slova
- antioxidant activity, prevention of biofilm formation, resveratrol, waste product utilization,
- Publikační typ
- časopisecké články MeSH