Nejvíce citovaný článek - PubMed ID 33306080
Magnetorheological fluids based on core-shell carbonyl iron particles modified by various organosilanes: synthesis, stability and performance
Comprehensive magnetic particle stability together with compatibility between them and liquid medium (silicone oil) is still a crucial issue in the case of magnetorheological (MR) suspensions to guarantee their overall stability and MR performance. Therefore, this study is aimed at improving the interfacial stability between the carbonyl iron (CI) particles and silicone oil. In this respect, the particles were modified with polymer brushes and dendritic structures of poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS), called CI-brushes or CI-dendrites, respectively, and their stability properties (corrosion, thermo-oxidation, and sedimentation) were compared to neat CI ones. Compatibility of the obtained particles and silicone oil was investigated using contact angle and off-state viscosity investigation. Finally, the magneto-responsive capabilities in terms of yield stress and reproducibility of the MR phenomenon were thoroughly investigated. It was found that MR suspensions based on CI-brushes had significantly improved compatibility properties than those of neat CI ones; however, the CI-dendrites-based suspension possessed the best capabilities, while the MR performance was negligibly suppressed.
- Publikační typ
- časopisecké články MeSH
A sedimentation-stable magnetorheological (MR) polishing slurry on the basis of ferrofluid, iron particles, Al2O3, and clay nanofiller in the form of sepiolite intended for MR polishing has been designed, prepared, and its polishing efficiency verified. Added clay substantially improved sedimentation stability of the slurry, decreasing its sedimentation rate to a quarter of its original value (1.8 to 0.45 mg s-1) while otherwise maintaining its good abrasive properties. The magnetisation curve measurement proved that designed slurry is soft magnetic material with no hysteresis, and its further suitability for MR polishing was confirmed by its magnetorheology namely in the quadratically increased yield stress due to the effect of applied magnetic field (0 to 600 kA m-1). The efficiency of the MR polishing process was tested on the flat samples of injection-moulded polyamide and verified by surface roughness/3D texture measurement. The resulting new composition of the MR polishing slurry exhibits a long-term stable system with a wide application window in the MR polishing process.
- Klíčová slova
- 3D texture, clay, magnetorheology, polishing, sedimentation, slurry,
- MeSH
- jíl MeSH
- magnetismus MeSH
- nylony * MeSH
- železo * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jíl MeSH
- magnesium trisilicate MeSH Prohlížeč
- nylony * MeSH
- železo * MeSH