Nejvíce citovaný článek - PubMed ID 33482273
Gene silencing delivery systems for the treatment of pancreatic cancer: Where and what to target next?
Pancreatic cancer is one of the most common forms of malignant disease with a poor survival prognosis. Currently, nanomedicine holds great promise for targeted diagnosis and treatment of this cancer, which also reduces toxic side effects. In this work, we prepared PEG-coated monodisperse upconversion nanoparticles (UCNPs) with a conjugated Flamma® fluorescent dye for imaging and detection of particle distribution in vivo. We performed a thorough physicochemical characterization of the particles and determined their colloidal and chemical stability in several aqueous media such as water, PBS, Dulbecco's modified Eagle's medium and artificial lysosomal fluid. Luminescence resonance energy transfer from the emission of UCNPs as a donor to the Flamma® as an acceptor was confirmed. Intraperitoneal versus intravenous administration was then compared in terms of biodistribution of particles in various organs in the orthotopic mice pancreatic cancer model. The intraperitoneal route was preferred over the intravenous one, because it significantly increased the accumulation of particles in the tumor tissue. These new UCNP@Ale-PEG-Flamma® nanoparticles are thus promising for new treatment avenues for pancreatic cancer.
- Publikační typ
- časopisecké články MeSH
Photodynamic therapy (PDT) has the potential to cure pancreatic cancer with minimal side effects. Visible wavelengths are primarily used to activate hydrophobic photosensitizers, but in clinical practice, these wavelengths do not sufficiently penetrate deeper localized tumor cells. In this work, NaYF4:Yb3+,Er3+,Fe2+ upconversion nanoparticles (UCNPs) were coated with polymer and labeled with meta-tetra(hydroxyphenyl)chlorin (mTHPC; temoporfin) to enable near-infrared light (NIR)-triggered PDT of pancreatic cancer. The coating consisted of alendronate-terminated poly[N,N-dimethylacrylamide-co-2-aminoethylacrylamide]-graft-poly(ethylene glycol) [P(DMA-AEM)-PEG-Ale] to ensure the chemical and colloidal stability of the particles in aqueous physiological fluids, thereby also improving the therapeutic efficacy. The designed particles were well tolerated by the human pancreatic adenocarcinoma cell lines CAPAN-2, PANC-1, and PA-TU-8902. After intratumoral injection of mTHPC-conjugated polymer-coated UCNPs and subsequent exposure to 980 nm NIR light, excellent PDT efficacy was achieved in tumor-bearing mice.
- MeSH
- akrylamidy chemie MeSH
- fotochemoterapie * metody MeSH
- fotosenzibilizující látky * chemie farmakologie MeSH
- infračervené záření MeSH
- koloidy chemie MeSH
- lidé MeSH
- mesoporfyriny * chemie farmakologie MeSH
- myši inbrední BALB C MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory slinivky břišní * farmakoterapie patologie MeSH
- nanočástice chemie MeSH
- polyethylenglykoly * chemie MeSH
- polymery chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrylamidy MeSH
- fotosenzibilizující látky * MeSH
- koloidy MeSH
- mesoporfyriny * MeSH
- polyethylenglykoly * MeSH
- polymery MeSH
- temoporfin MeSH Prohlížeč
This updated review aims to describe the current status in the development of liposome-based systems for the targeted delivery of phthalocyanines for photodynamic therapy (PDT). Although a number of other drug delivery systems (DDS) can be found in the literature and have been studied for phthalocyanines or similar photosensitizers (PSs), liposomes are by far the closest to clinical practice. PDT itself finds application not only in the selective destruction of tumour tissues or the treatment of microbial infections, but above all in aesthetic medicine. From the point of view of administration, some PSs can advantageously be delivered through the skin, but for phthalocyanines, systemic administration is more suitable. However, systemic administration places higher demands on advanced DDS, active tissue targeting and reduction of side effects. This review focuses on the already described liposomal DDS for phthalocyanines, but also describes examples of DDS used for structurally related PSs, which can be assumed to be applicable to phthalocyanines as well.
- Klíčová slova
- PDT, cancer, liposome, photosensitizer, phthalocyanine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH