Most cited article - PubMed ID 33534179
Genome-wide scan of long noncoding RNA single nucleotide polymorphisms and pancreatic cancer susceptibility
Genome-wide association studies (GWAS) are a powerful tool for detecting variants associated with complex traits and can help risk stratification and prevention strategies against pancreatic ductal adenocarcinoma (PDAC). However, the strict significance threshold commonly used makes it likely that many true risk loci are missed. Functional annotation of GWAS polymorphisms is a proven strategy to identify additional risk loci. We aimed to investigate single-nucleotide polymorphisms (SNP) in regulatory regions [transcription factor binding sites (TFBSs) and enhancers] that could change the expression profile of multiple genes they act upon and thereby modify PDAC risk. We analyzed a total of 12,636 PDAC cases and 43,443 controls from PanScan/PanC4 and the East Asian GWAS (discovery populations), and the PANDoRA consortium (replication population). We identified four associations that reached study-wide statistical significance in the overall meta-analysis: rs2472632(A) (enhancer variant, OR 1.10, 95%CI 1.06,1.13, p = 5.5 × 10-8), rs17358295(G) (enhancer variant, OR 1.16, 95%CI 1.10,1.22, p = 6.1 × 10-7), rs2232079(T) (TFBS variant, OR 0.88, 95%CI 0.83,0.93, p = 6.4 × 10-6) and rs10025845(A) (TFBS variant, OR 1.88, 95%CI 1.50,1.12, p = 1.32 × 10-5). The SNP with the most significant association, rs2472632, is located in an enhancer predicted to target the coiled-coil domain containing 34 oncogene. Our results provide new insights into genetic risk factors for PDAC by a focused analysis of polymorphisms in regulatory regions and demonstrating the usefulness of functional prioritization to identify loci associated with PDAC risk.
- Keywords
- Association study, Enhancer, Pancreatic cancer, Single nucleotide polymorphism, Transcription factor binding site,
- MeSH
- Genome-Wide Association Study MeSH
- Carcinoma, Pancreatic Ductal * genetics pathology MeSH
- Genetic Predisposition to Disease MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- Humans MeSH
- Pancreatic Neoplasms * genetics epidemiology pathology MeSH
- Regulatory Sequences, Nucleic Acid MeSH
- Transcription Factors genetics metabolism MeSH
- Binding Sites genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Transcription Factors MeSH
BACKGROUND: The genomes of present-day non-Africans are composed of 1-3% of Neandertal-derived DNA as a consequence of admixture events between Neandertals and anatomically modern humans about 50-60 thousand years ago. Neandertal-introgressed single nucleotide polymorphisms (aSNPs) have been associated with modern human disease-related traits, which are risk factors for pancreatic ductal adenocarcinoma (PDAC), such as obesity, type 2 diabetes, and inflammation. In this study, we aimed at investigating the role of aSNPs in PDAC in three Eurasian populations. RESULTS: The high-coverage Vindija Neandertal genome was used to select aSNPs in non-African populations from 1000 Genomes project phase 3 data. Then, the association between aSNPs and PDAC risk was tested independently in Europeans and East Asians, using existing GWAS data on more than 200 000 individuals. We did not find any significant associations between aSNPs and PDAC in samples of European descent, whereas, in East Asians, we observed that the Chr10p12.1-rs117585753-T allele (MAF = 10%) increased the risk to develop PDAC (OR = 1.35, 95%CI 1.19-1.54, P = 3.59 × 10-6), with a P-value close to a threshold that takes into account multiple testing. CONCLUSIONS: Our results show only a minimal contribution of Neandertal SNPs to PDAC risk.
- Keywords
- Admixture, Association study, Eurasians, Introgression, Neandertal, Pancreatic cancer,
- MeSH
- Diabetes Mellitus, Type 2 * MeSH
- Carcinoma, Pancreatic Ductal * genetics MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Pancreatic Neoplasms * genetics MeSH
- Neanderthals * genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
The incidence of pancreatic ductal adenocarcinoma (PDAC) is different among males and females. This disparity cannot be fully explained by the difference in terms of exposure to known risk factors; therefore, the lower incidence in women could be attributed to sex-specific hormones. A two-phase association study was conducted in 12,387 female subjects (5436 PDAC cases and 6951 controls) to assess the effect on risk of developing PDAC of single nucleotide polymorphisms (SNPs) in 208 genes involved in oestrogen and pregnenolone biosynthesis and oestrogen-mediated signalling. In the discovery phase 14 polymorphisms showed a statistically significant association (P < 0.05). In the replication none of the findings were validated. In addition, a gene-based analysis was performed on the 208 selected genes. Four genes (NR5A2, MED1, NCOA2 and RUNX1) were associated with PDAC risk, but only NR5A2 showed an association (P = 4.08 × 10-5) below the Bonferroni-corrected threshold of statistical significance. In conclusion, despite differences in incidence between males and females, our study did not identify an effect of common polymorphisms in the oestrogen and pregnenolone pathways in relation to PDAC susceptibility. However, we validated the previously reported association between NR5A2 gene variants and PDAC risk.
- MeSH
- Adenocarcinoma * pathology MeSH
- Carcinoma, Pancreatic Ductal * pathology MeSH
- Estrogens genetics MeSH
- Humans MeSH
- Pancreatic Neoplasms * epidemiology genetics pathology MeSH
- Pregnenolone MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Estrogens MeSH
- Pregnenolone MeSH
Pancreatic cancer, a complex disease, emerges as a severe health problem worldwide and it exhibits a poor prognosis and high mortality. Risk factors associated with sporadic pancreatic cancer remain poorly understood, even less is known about disease prognosis due to its rapid progression. The PANcreatic Disease ReseArch (PANDoRA) consortium, of which the authors are members, was established to coordinate the efforts of different research groups to uncover new genetic factors for pancreatic cancer risk, response to treatment, and patient survival. PANDoRA consortium has contributed to the identification of several low-penetrance risk loci for the disease both by candidate variants approach and genome-wide association studies, including those in cell-cycle and DNA damage response, telomere homeostasis, SCL and ABC transporters, ABO locus variability, mitochondrial metabolism and it participated on collaborative genome-wide association study approach and implementation of a search for functional-based pancreatic cancer risk loci and long noncoding RNAs. Complex studies covering genetic, environmental and microenvironmental factors in the pancreatic cancer onset, progression and its prognosis are warranted.
- MeSH
- Genome-Wide Association Study MeSH
- Carcinoma, Pancreatic Ductal * genetics pathology MeSH
- Genetic Predisposition to Disease MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Pancreatic Neoplasms * genetics pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Genetic factors play an important role in the susceptibility to pancreatic cancer (PC). However, established loci explain a small proportion of genetic heritability for PC; therefore, more progress is needed to find the missing ones. We aimed at identifying single nucleotide polymorphisms (SNPs) affecting PC risk through effects on micro-RNA (miRNA) function. We searched in silico the genome for SNPs in miRNA seed sequences or 3 prime untranslated regions (3'UTRs) of miRNA target genes. Genome-wide association data of PC cases and controls from the Pancreatic Cancer Cohort (PanScan) Consortium and the Pancreatic Cancer Case-Control (PanC4) Consortium were re-analyzed for discovery, and genotyping data from two additional consortia (PanGenEU and PANDoRA) were used for replication, for a total of 14,062 cases and 11,261 controls. None of the SNPs reached genome-wide significance in the meta-analysis, but for three of them the associations were in the same direction in all the study populations and showed lower value of p in the meta-analyses than in the discovery phase. Specifically, rs7985480 was consistently associated with PC risk (OR = 1.12, 95% CI 1.07-1.17, p = 3.03 × 10-6 in the meta-analysis). This SNP is in linkage disequilibrium (LD) with rs2274048, which modulates binding of various miRNAs to the 3'UTR of UCHL3, a gene involved in PC progression. In conclusion, our results expand the knowledge of the genetic PC risk through miRNA-related SNPs and show the usefulness of functional prioritization to identify genetic polymorphisms associated with PC risk.
- Keywords
- genetic polymorphisms, miRNA, pancreatic cancer, pancreatic ductal adenocarcinoma, susceptibility,
- Publication type
- Journal Article MeSH
Although pancreatic ductal adenocarcinoma (PDAC) survival is poor, there are differences in patients' response to the treatments. Detection of predictive biomarkers explaining these differences is of the utmost importance. In a recent study two genetic markers (CD44-rs353630 and CHI3L2-rs684559) were reported to be associated with survival after PDAC resection. We attempted to replicate the associations in 1856 PDAC patients (685 resected with stage I/II) from the PANcreatic Disease ReseArch (PANDoRA) consortium. We also analysed the combined effect of the two genotypes in order to compare our results with what was previously reported. Additional stratified analyses considering TNM stage of the disease and whether the patients received surgery were also performed. We observed no statistically significant associations, except for the heterozygous carriers of CD44-rs353630, who were associated with worse OS (HR = 5.01; 95% CI 1.58-15.88; p = 0.006) among patients with stage I disease. This association is in the opposite direction of those reported previously, suggesting that data obtained in such small subgroups are hardly replicable and should be considered cautiously. The two polymorphisms combined did not show any statistically significant association. Our results suggest that the effect of CD44-rs353630 and CHI3L2-rs684559 cannot be generalized to all PDAC patients.
- MeSH
- Hyaluronan Receptors genetics MeSH
- Chitinases genetics MeSH
- Carcinoma, Pancreatic Ductal genetics mortality MeSH
- Polymorphism, Single Nucleotide MeSH
- Kaplan-Meier Estimate MeSH
- Middle Aged MeSH
- Humans MeSH
- Biomarkers, Tumor genetics MeSH
- Pancreatic Neoplasms genetics mortality MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Hyaluronan Receptors MeSH
- CD44 protein, human MeSH Browser
- CHI3L2 protein, human MeSH Browser
- Chitinases MeSH
- Biomarkers, Tumor MeSH