Nejvíce citovaný článek - PubMed ID 33540213
The underexplored role of diverse stress factors in microbial biopolymer synthesis
Cyanobacteria are prokaryotic organisms characterised by their complex structures and a wide range of pigments. With their ability to fix CO2, cyanobacteria are interesting for white biotechnology as cell factories to produce various high-value metabolites such as polyhydroxyalkanoates, pigments, or proteins. White biotechnology is the industrial production and processing of chemicals, materials, and energy using microorganisms. It is known that exposing cyanobacteria to low levels of stressors can induce the production of secondary metabolites. Understanding of this phenomenon, known as hormesis, can involve the strategic application of controlled stressors to enhance the production of specific metabolites. Consequently, precise measurement of cyanobacterial viability becomes crucial for process control. However, there is no established reliable and quick viability assay protocol for cyanobacteria since the task is challenging due to strong interferences of autofluorescence signals of intercellular pigments and fluorescent viability probes when flow cytometry is used. We performed the screening of selected fluorescent viability probes used frequently in bacteria viability assays. The results of our investigation demonstrated the efficacy and reliability of three widely utilised types of viability probes for the assessment of the viability of Synechocystis strains. The developed technique can be possibly utilised for the evaluation of the importance of polyhydroxyalkanoates for cyanobacterial cultures with respect to selected stressor-repeated freezing and thawing. The results indicated that the presence of polyhydroxyalkanoate granules in cyanobacterial cells could hypothetically contribute to the survival of repeated freezing and thawing.
- Klíčová slova
- Biotechnology, Cyanobacteria, Flow cytometry, Fluorescent viability probes, Stress resistance, Viability assessment,
- MeSH
- fluorescenční barviva * MeSH
- fyziologický stres * MeSH
- mikrobiální viabilita * MeSH
- polyhydroxyalkanoáty metabolismus MeSH
- průtoková cytometrie * metody MeSH
- sinice * fyziologie MeSH
- Synechocystis * fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorescenční barviva * MeSH
- polyhydroxyalkanoáty MeSH
Poly(3-hydroxybutyrate) (PHB) is a biobased and biodegradable polymer with properties comparable to polypropylene and therefore has the potential to replace conventional plastics. PHB is intracellularly accumulated by prokaryotic organisms. For the cells PHB functions manly as carbon and energy source, but all possible functions of PHB are still not known. Synechocystis (cyanobacteria) accumulates PHB using light as energy and CO2 as carbon source. The main trigger for PHB accumulation in cyanobacteria is nitrogen and phosphorous depletion with simultaneous surplus of carbon and energy. For the above reasons, obtaining knowledge about external factors influencing PHB accumulation is of highest interest. This study compares the effect of continuous light exposure and day/night (16/8 h) cycles on selected physiology parameters of three Synechocystis strains. We show that continuous illumination at moderate light intensities leads to an increased PHB accumulation in Synechocystis salina CCALA 192 (max. 14.2% CDW - cell dry weight) compared to day/night cycles (3.7% CDW). In addition to PHB content, glycogen and cell size increased, while cell density and cell viability decreased. The results offer new approaches for further studies to gain deeper insights into the role of PHB in cyanobacteria to obtain bioplastics in a more sustainable and environmentally friendly way.
- Klíčová slova
- PHB, Synechocystis, cell size, continuous illumination, day/night cycle, glycogen,
- Publikační typ
- časopisecké články MeSH
The cyanobacterial genus Synechocystis is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the increased salinity that can be caused by recycled or brackish water used in cultivation. While overall reduced growth is expected in response to salt stress, other metabolic responses relevant to the efficiency of phototrophic production of biomass or PHB (or both) have been experimentally observed in three Synechocystis strains at stepwise increasing salt concentrations. In response to recent reports on metabolic strategies to increase stress tolerance of heterotrophic and phototrophic bacteria, we focused particularly on the stress-induced response of Synechocystis strains in terms of PHB, glycogen and photoactive pigment dynamics. Of the three strains studied, the strain Synechocystis cf. salina CCALA192 proved to be the most tolerant to salt stress. In addition, this strain showed the highest PHB accumulation. All the three strains accumulated more PHB with increasing salinity, to the point where their photosystems were strongly inhibited and they could no longer produce enough energy to synthesize more PHB.
- Klíčová slova
- Glycogen, Pigments, Poly(3-hydroxybutyrate), Salt stress, Synechocystis sp.,
- Publikační typ
- časopisecké články MeSH
Actinobacteria belonging to the genus Rubrobacter are known for their multi-extremophilic growth conditions-they are highly radiation-resistant, halotolerant, thermotolerant or even thermophilic. This work demonstrates that the members of the genus are capable of accumulating polyhydroxyalkanoates (PHA) since PHA-related genes are widely distributed among Rubrobacter spp. whose complete genome sequences are available in public databases. Interestingly, all Rubrobacter strains possess both class I and class III synthases (PhaC). We have experimentally investigated the PHA accumulation in two thermophilic species, R. xylanophilus and R. spartanus. The PHA content in both strains reached up to 50% of the cell dry mass, both bacteria were able to accumulate PHA consisting of 3-hydroxybutyrate and 3-hydroxyvalerate monomeric units, none other monomers were incorporated into the polymer chain. The capability of PHA accumulation likely contributes to the multi-extremophilic characteristics since it is known that PHA substantially enhances the stress robustness of bacteria. Hence, PHA can be considered as extremolytes enabling adaptation to extreme conditions. Furthermore, due to the high PHA content in biomass, a wide range of utilizable substrates, Gram-stain positivity, and thermophilic features, the Rubrobacter species, in particular Rubrobacter xylanophilus, could be also interesting candidates for industrial production of PHA within the concept of Next-Generation Industrial Biotechnology.
- Klíčová slova
- Rubrobacter spartanus, Rubrobacter xylanophilus, extremophiles, polyhydroxyalkanoates, stress conditions,
- Publikační typ
- časopisecké články MeSH