Nejvíce citovaný článek - PubMed ID 33599213
Differentiation of adipose tissue-derived stem cells towards vascular smooth muscle cells on modified poly(L-lactide) foils
The increasing prevalence of antibiotic-resistant bacteria has intensified the need for innovative antibacterial surfaces, particularly in biomedical applications. Traditional approaches often rely on chemical agents alone, which may lead to diminishing efficacy over time. To address this, we investigated the development of a novel antibacterial surface by combining the inherent antimicrobial properties of copper with an engineered surface topography on a biopolymer matrix. A copper-poly-L-lactic acid (Cu-PLLA) composite system was fabricated using sputtering deposition followed by controlled thermal treatment to induce wrinkle-like micro- and nanostructures on the surface. The surface morphology was characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), confirming the formation of hierarchical wrinkle patterns. The chemical composition and distribution of copper were analyzed via energy-dispersive X-ray spectroscopy (EDS). Antibacterial performance was assessed against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus using standard colony count reduction assays. The Cu-PLLA wrinkled surfaces demonstrated significantly enhanced bactericidal activity compared with flat PLLA and copper-free controls, a finding attributed to a synergistic effect of mechanical membrane disruption and copper-mediated chemical toxicity. These findings suggest that biopolymer-metal hybrid surfaces with engineered topography offer a promising strategy for developing next-generation antibacterial materials suitable for biomedical and clinical use.
- Klíčová slova
- antibacterial properties, biopolymer, copper composites, poly-L-lactic acid (PLLA), surface morphology, wrinkle structure,
- Publikační typ
- časopisecké články MeSH
We compared the applicability of 3D fibrous scaffolds, produced by our patented centrifugal spinning technology, in soft tissue engineering. The scaffolds were prepared from four different biocompatible and biodegradable thermoplastics, namely, polylactide (PLA), polycaprolactone (PCL), poly(3-hydroxybutyrate) (PHB), and poly(1,4-butylene succinate) (PBS) and their blends. The combined results of SEM and BET analyses revealed an internal hierarchically organized porosity of the polymeric micro/nanofibers. Both nanoporosity and capillary effect are crucial for the water retention capacity of scaffolds designed for tissue engineering. The increased surface area provided by nanoporosity enhances water retention, while the capillary effect facilitates the movement of water and nutrients within the scaffolds. When the scaffolds were seeded with adipose-derived stem cells (ASCs), the ingrowth of these cells was the deepest in the PLA/PCL 13.5/4 (w/w) composite scaffolds. This result is consistent with the relatively large pore size in the fibrous networks, the high internal porosity, and the large specific surface area found in these scaffolds, which may therefore be best suited as a component of adipose tissue substitutes that could reduce postoperative tissue atrophy. Adipose tissue constructs produced in this way could be used in the future instead of conventional fat grafts, for example, in breast reconstruction following cancer ablation.
- Klíčová slova
- PBS, PCL, PHB, PLA, bioartificial adipose tissue, centrifugal spinning technology, hierarchical inner porosity of fibers, mesenchymal stem cells, micro/nanofibrous scaffolds, tissue engineering,
- Publikační typ
- časopisecké články MeSH
One of the major goals of vascular tissue engineering is to develop much-needed materials that are suitable for use in small-diameter vascular grafts. Poly(1,8-octamethylene citrate) can be considered for manufacturing small blood vessel substitutes, as recent studies have demonstrated that this material is cytocompatible with adipose tissue-derived stem cells (ASCs) and favors their adhesion and viability. The work presented here is focused on modifying this polymer with glutathione (GSH) in order to provide it with antioxidant properties, which are believed to reduce oxidative stress in blood vessels. Cross-linked poly(1,8-octamethylene citrate) (cPOC) was therefore prepared by polycondensation of citric acid and 1,8-octanediol at a 2:3 molar ratio of the reagents, followed by in-bulk modification with 0.4, 0.8, 4 or 8 wt.% of GSH and curing at 80 °C for 10 days. The chemical structure of the obtained samples was examined by FTIR-ATR spectroscopy, which confirmed the presence of GSH in the modified cPOC. The addition of GSH increased the water drop contact angle of the material surface and lowered the surface free energy values. The cytocompatibility of the modified cPOC was evaluated in direct contact with vascular smooth-muscle cells (VSMCs) and ASCs. The cell number, the cell spreading area and the cell aspect ratio were measured. The antioxidant potential of GSH-modified cPOC was measured by a free radical scavenging assay. The results of our investigation indicate the potential of cPOC modified with 0.4 and 0.8 wt.% of GSH to produce small-diameter blood vessels, as the material was found to: (i) have antioxidant properties, (ii) support VSMC and ASC viability and growth and (iii) provide an environment suitable for the initiation of cell differentiation.