Nejvíce citovaný článek - PubMed ID 33742017
Validation and verification of predictive salivary biomarkers for oral health
In this paper, we present the ImmunoDisk, a fully automated sample-to-answer centrifugal microfluidic cartridge, integrating a heterogeneous, wash-free, magnetic- and fluorescent bead-based immunoassay (bound-free phase detection immunoassay/BFPD-IA). The BFPD-IA allows the implementation of a simple fluidic structure, where the assay incubation, bead separation and detection are performed in the same chamber. The system was characterized using a C-reactive protein (CRP) competitive immunoassay. A parametric investigation on air drying of protein-coupled beads for pre-storage at room temperature is presented. The key parameters were buffer composition, drying temperature and duration. A protocol for drying two different types of protein-coupled beads with the same temperature and duration using different drying buffers is presented. The sample-to-answer workflow was demonstrated measuring CRP in 5 µL of human serum, without prior dilution, utilizing only one incubation step, in 20 min turnaround time, in the clinically relevant concentration range of 15-115 mg/L. A reproducibility assessment over three disk batches revealed an average signal coefficient of variation (CV) of 5.8 ± 1.3%. A CRP certified reference material was used for method verification with a concentration CV of 8.6%. Our results encourage future testing of the CRP-ImmunoDisk in clinical studies and its point-of-care implementation in many diagnostic applications.
- Klíčová slova
- bound-free phase, centrifugal microfluidics, immunoassay, inflammation, micro/nanoparticles, point-of-care, reagent storage,
- MeSH
- C-reaktivní protein * MeSH
- imunoanalýza metody MeSH
- indikátory a reagencie MeSH
- lidé MeSH
- mikrofluidika * MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- C-reaktivní protein * MeSH
- indikátory a reagencie MeSH
Periodontal disease begins as an inflammatory response to a bacterial biofilm deposited around the teeth, which over time leads to the destruction of tooth-supporting structures and consequently tooth loss. Conventional treatment strategies show limited efficacy in promoting regeneration of damaged periodontal tissues. Here, a delivery platform is developed for small extracellular vesicles (sEVs) derived from gingival mesenchymal stem cells (GMSCs) to treat periodontitis. EVs can achieve comparable therapeutic effects to their cells of origin. However, the short half-lives of EVs after their administration along with their rapid diffusion away from the delivery site necessitate frequent administration to achieve therapeutic benefits. To address these issues, "dual delivery" microparticles are engineered enabling microenvironment-sensitive release of EVs by metalloproteinases at the affected site along with antibiotics to suppress bacterial biofilm growth. GMSC sEVs are able to decrease the secretion of pro-inflammatory cytokines by monocytes/macrophages and T cells, suppress T-cell activation, and induce the formation of T regulatory cells (Tregs) in vitro and in a rat model of periodontal disease. One-time administration of immunomodulatory GMSC sEV-decorated microparticles leads to a significant improvement in regeneration of the damaged periodontal tissue. This approach will have potential clinical applications in the regeneration of a variety of tissues.
- Klíčová slova
- extracellular vesicles, immunoengineering, local drug delivery, periodontal tissue healing, periodontitis,
- MeSH
- extracelulární vezikuly * MeSH
- kmenové buňky MeSH
- krysa rodu Rattus MeSH
- mezenchymální kmenové buňky * MeSH
- nemoci parodontu * terapie MeSH
- parodont MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH