Most cited article - PubMed ID 33937096
Immune Profile in Patients With COVID-19: Lymphocytes Exhaustion Markers in Relationship to Clinical Outcome
Coronavirus disease 2019 (COVID-19) is a highly contagious viral disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It can manifest as mild to severe flu-like and non-flu-like symptoms and signs, which are associated with immune dysfunction and increased mortality. The findings from COVID-19 patients imply a link between immune system abnormalities such as impaired T-cell responses or cytokine imbalances and increased risk for worse clinical outcomes, which has not been fully understood. Owing to the regulatory role of inhibitory immune checkpoints during COVID-19 infection, this review summarizes the available studies concerning the TIM3 as a relatively less characterized immune checkpoint in COVID-19 patients.
- Keywords
- Biomarker, COVID-19, Immune checkpoint, Infection, TIM3, Virus,
- Publication type
- Journal Article MeSH
- Review MeSH
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that spread around the world during the past 2 years, has infected more than 260 million people worldwide and has imposed an important burden on the healthcare system. Several risk factors associated with unfavorable outcome were identified, including elderly age, selected comorbidities, immune suppression as well as laboratory markers. The role of immune system in the pathophysiology of SARS-CoV-2 infection is indisputable: while an appropriate function of the immune system is important for a rapid clearance of the virus, progression to the severe and critical phases of the disease is related to an exaggerated immune response associated with a cytokine storm. We analyzed differences and longitudinal changes in selected immune parameters in 823 adult COVID-19 patients hospitalized in the Martin University Hospital, Martin, Slovakia. Examined parameters included the differential blood cell counts, various parameters of cellular and humoral immunity (serum concentration of immunoglobulins, C4 and C3), lymphocyte subsets (CD3+, CD4+, CD8+, CD19+, NK cells, CD4+CD45RO+), expression of activation (HLA-DR, CD38) and inhibition markers (CD159/NKG2A). Besides already known changes in the differential blood cell counts and basic lymphocyte subsets, we found significantly higher proportion of CD8+CD38+ cells and significantly lower proportion of CD8+NKG2A+ and NK NKG2A+ cells on admission in non-survivors, compared to survivors; recovery in survivors was associated with a significant increase in the expression of HLA-DR and with a significant decrease of the proportion of CD8+CD38+cells. Furthermore, patients with fatal outcome had significantly lower concentrations of C3 and IgM on admission. However, none of the examined parameters had sufficient sensitivity or specificity to be considered a biomarker of fatal outcome. Understanding the dynamic changes in immune profile of COVID-19 patients may help us to better understand the pathophysiology of the disease, potentially improve management of hospitalized patients and enable proper timing and selection of immunomodulator drugs.
- Keywords
- COVID-19, SARS-CoV-2, activated CD8+ cells, clinical outcome, immune cell dysregulation, immunologic predictors,
- MeSH
- CD8-Positive T-Lymphocytes * immunology MeSH
- COVID-19 * diagnosis immunology MeSH
- Adult MeSH
- HLA-DR Antigens MeSH
- Humans MeSH
- Lymphocyte Subsets MeSH
- SARS-CoV-2 MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- HLA-DR Antigens MeSH
COVID-19 (Coronavirus Disease) is an infectious disease caused by the coronavirus SARS-CoV-2 (Severe acute respiratory syndrome Coronavirus 2), which belongs to the genus Betacoronavirus. It was first identified in patients with severe respiratory disease in December 2019 in Wuhan, China. It mainly affects the respiratory system, and in severe cases causes serious lung infection or pneumonia, which can lead to the death of the patient. Clinical studies show that SARS-CoV-2 infection in critical cases causes acute tissue damage due to a pathological immune response. The immune response to a new coronavirus is complex and involves many processes of specific and non-specific immunity. Analysis of available studies has shown various changes, especially in the area of specific cellular immunity, including lymphopenia, decreased T cells (CD3+, CD4+ and CD8+), changes in the T cell compartment associated with symptom progression, deterioration of the condition and development of lung damage. We provide a detailed review of the analyses of immune checkpoint molecules PD-1, TIM-3, LAG-3 CTLA-4, TIGIT, BTLA, CD223, IDO-1 and VISTA on exhausted T cells in patients with asymptomatic to symptomatic stages of COVID-19 infection. Furthermore, this review may help to better understand the pathological T cell immune response and improve the design of therapeutic strategies for patients with SARS-CoV-2 infection.
- MeSH
- COVID-19 immunology metabolism virology MeSH
- Phenotype MeSH
- Host-Pathogen Interactions MeSH
- Humans MeSH
- Immune Checkpoint Proteins metabolism MeSH
- SARS-CoV-2 immunology pathogenicity MeSH
- Signal Transduction MeSH
- T-Lymphocytes immunology metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Immune Checkpoint Proteins MeSH
The SARS-CoV-2 pandemic has indeed been one of the most significant problems facing the world in the last decade. It has affected (directly or indirectly) the entire population and all age groups. Children have accounted for 1.7 % to 2 % of the diagnosed cases of COVID-19. COVID-19 in children is usually associated with a mild course of the disease and a better survival rate than in adults. In this review, we investigate the different mechanisms which underlie this observation. Generally, we can say that the innate immune response of children is strong because they have a trained immunity, allowing the early control of infection at the site of entry. Suppressed adaptive immunity and a dysfunctional innate immune response is seen in adult patients with severe infections but not in children. This may relate to immunosenescence in the elderly. Another proposed factor is the different receptors for SARS-CoV-2 and their differences in expression between these age groups. In infants and toddlers, effective immune response to viral particles can be modulated by the pre-existing non-specific effect of live attenuated vaccines on innate immunity and vitamin D prophylaxis. However, all the proposed mechanisms require verification in larger cohorts of patients. Our knowledge about SARS-CoV-2 is still developing.
- MeSH
- COVID-19 immunology physiopathology therapy virology MeSH
- Child MeSH
- Adult MeSH
- Risk Assessment MeSH
- Immune System growth & development physiopathology virology MeSH
- Host-Pathogen Interactions MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Prognosis MeSH
- Risk Factors MeSH
- SARS-CoV-2 immunology pathogenicity MeSH
- Severity of Illness Index MeSH
- Age Factors MeSH
- Child Development * MeSH
- Adolescent Development * MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Publication type
- Journal Article MeSH
- Review MeSH