Most cited article - PubMed ID 33974842
Evaluation of the ERA5 reanalysis-based Universal Thermal Climate Index on mortality data in Europe
The assessment of human perception of the thermal environment is becoming highly relevant in the context of global climate change and its impact on public health. In this study, we aimed to evaluate the suitability of the use of four frequently used thermal comfort indices (thermal indices)-Wet Bulb Global Temperature (WGBT), Heat Index (HI), Physiologically Equivalent Temperature (PET), and Universal Thermal Climate Index (UTCI)-to assess human thermal comfort perception in three large urban parks in Central Europe, using Prague, the capital of the Czech Republic, as a case study. We investigated the relationship between the four indices and the thermal perception of park visitors, while taking into account the effect of the sex, age, and activity of the respondents and the week-time and daytime of their visit (assessed parameters). Park visitors were interviewed during the summertime, while collecting meteorological data. The correlations were performed to explore the relationship between the thermal perception and the individual thermal indices, multivariate statistical methods were used to explain how well the variation in thermal perception can be explained by the assessed parameters. We found a significant association between all the indices and thermal perception; however, the relationship was the strongest with HI. While thermal perception was independent of sex and week-time, we found a significant effect of age, physical activity, and daytime of the visit. Nevertheless, the effects can largely be explained by thermal conditions. Based on the results, we conclude that all the investigated indices are suitable for use in studies of thermal comfort in parks in Central Europe in summertime, while HI seems the most suitable for architects and planners.
- MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Perception * MeSH
- Seasons MeSH
- Aged MeSH
- Parks, Recreational * MeSH
- Thermosensing * physiology MeSH
- Hot Temperature * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
- Geographicals
- Czech Republic MeSH
The rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems.
- Keywords
- climate change, heat stress, humidity, mortality, urban climate,
- Publication type
- Journal Article MeSH
It is acknowledged that climate change exacerbates social inequalities, and women have been reported as more vulnerable to heat than men in many studies in Europe, including the Czech Republic. This study aimed at investigating the associations between daily temperature and mortality in the Czech Republic in the light of a sex and gender perspective, taking into account other factors such as age and marital status. Daily mean temperature and individual mortality data recorded during the five warmest months of the year (from May to September) over the period 1995-2019 were used to fit a quasi-Poisson regression model, which included a distributed lag non-linear model (DLNM) to account for the delayed and non-linear effects of temperature on mortality. The heat-related mortality risks obtained in each population group were expressed in terms of risk at the 99th percentile of summer temperature relative to the minimum mortality temperature. Women were found generally more at risk to die because of heat than men, and the difference was larger among people over 85 years old. Risks among married people were lower than risks among single, divorced, and widowed people, while risks in divorced women were significantly higher than in divorced men. This is a novel finding which highlights the potential role of gender inequalities in heat-related mortality. Our study underlines the relevance of including a sex and gender dimension in the analysis of the impacts of heat on the population and advocates the development of gender-based adaptation policies to extreme heat.
- Keywords
- Czech Republic, DLNM, Heat stress, Mortality, Sex and gender inequalities,
- MeSH
- Gender Equity * MeSH
- Humans MeSH
- Mortality MeSH
- Aged, 80 and over MeSH
- Temperature MeSH
- Hot Temperature * MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic epidemiology MeSH
- Europe MeSH
Combined heat and humidity is frequently described as the main driver of human heat-related mortality, more so than dry-bulb temperature alone. While based on physiological thinking, this assumption has not been robustly supported by epidemiological evidence. By performing the first systematic comparison of eight heat stress metrics (i.e., temperature combined with humidity and other climate variables) with warm-season mortality, in 604 locations over 39 countries, we find that the optimal metric for modelling mortality varies from country to country. Temperature metrics with no or little humidity modification associates best with mortality in ~40% of the studied countries. Apparent temperature (combined temperature, humidity and wind speed) dominates in another 40% of countries. There is no obvious climate grouping in these results. We recommend, where possible, that researchers use the optimal metric for each country. However, dry-bulb temperature performs similarly to humidity-based heat stress metrics in estimating heat-related mortality in present-day climate.
- Keywords
- climate and health, dry heat, heat stress, heat-related mortality, humid heat,
- Publication type
- Journal Article MeSH
Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.
- MeSH
- Weather * MeSH
- Climate * MeSH
- Temperature MeSH
- Hot Temperature MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH