Nejvíce citovaný článek - PubMed ID 34067201
Rheometer Evidences for the Co-Curing Effect of a Bismaleimide in Conjunction with the Accelerated Sulfur on Natural Rubber/Chloroprene Rubber Blends
The state of cure and the vulcanizate properties of a conventional accelerated sulfur (CV) cured 50/50 blend of natural rubber (NR) and bromobutyl rubber (BIIR) were inferior. However, this blend exhibits a higher extent of cure with remarkable improvements in its mechanical properties, particularly the tensile strength, modulus and hardness after curing with a combination of accelerated sulfur and three parts per hundred rubber (phr) of a bismaleimide (MF3). Moreover, with the use of 0.25 phr of dicumyl peroxide (DCP) along with the CV/MF3 system, the compression set property of the CV-only cured blend could be reduced from 68% to 15%. The enhanced compatibility between NR and BIIR with the aid of bismaleimide via the Diels-Alder reaction was identified as the primary reason for the improved cure state and the mechanical properties. However, the incorporation of a certain amount of bismaleimide as a crosslink in the NR phase of the blend, via a radical initiated crosslinking process by the action of DCP, is responsible for the improved compression set properties.
- Klíčová slova
- Diels–Alder reaction, bismaleimide, compression set, curing, rubber, tensile strength,
- Publikační typ
- časopisecké články MeSH
The rheometer curing curves of 50/50 blends of natural rubber (NR) and two different halogenated rubbers with a combination of conventional accelerated sulfur (CV) and 3 phr of a bismaleimide (MF3) at 170 °C indicates that a co-curing reaction has been taken place between NR and the halogenated rubbers via Diels-Alder reaction. To further confirm whether the co-curing reaction has taken place in the early stage of curing, a complex test methodology was applied with the help of a rubber process analyzer. In this test, the blends with CV and with CVMF3 were subjected to cure at 170 °C for a predetermined time so that both the CV and CVMF3 cured blends will have the same magnitude of curing torque. It is then cooled down to 40 °C and the storage modulus (G') was evaluated as a function of strain from 0.5% to 100% at a constant frequency of 1 Hz. The results reveal that the blends cured with CVMF3 exhibit a higher G' due to the enhanced network strength because of the formation of bismaleimide crosslinks than the same cured with only the CV system. The swelling resistance and the mechanical properties of the blends cured with CVMF3 were significantly higher than those cured with only the CV system.
- Klíčová slova
- curing, rheometer, rubber, rubber process analyzer, strain sweep,
- Publikační typ
- časopisecké články MeSH