Most cited article - PubMed ID 34344951
Evidence of an epidemic spread of KPC-producing Enterobacterales in Czech hospitals
The objective of this study was to characterize the virulence characteristics of a collection of Klebsiella pneumoniae isolates collected from different clinical sources. A collection of 60 non-repetitive K. pneumoniae isolates, was studied. In vitro, virulence was analyzed by testing the survival of bacteria in pooled human serum. Isolates were typed by MLST. The genomes of 23 K. pneumoniae isolates, representatives of different STs and virulence profiles, were completely sequenced using the Illumina platform. Of note, 26/60 of K. pneumoniae isolates were resistant to killing by complement. Serum-resistant isolates belonged to distinct STs. Analysis of WGS data with VFDB showed the presence of several virulence genes related various virulence functions. Specifically, serum-resistant isolates carried a higher number of ORFs, which were associated with serum resistance, compared to serum-sensitive isolates. Additionally, analysis of WGS data showed the presence of multiple plasmid replicons that could be involved with the spread and acquisition of resistance and virulence genes. In conclusion, analysis of virulence characteristics showed that an important percentage (31.6%) of K. pneumoniae isolates were in vitro virulent by exhibiting resistance to serum. Thus, the presence of several virulence factors, in combination with the presence of multidrug resistance, could challenge antimicrobial therapy of infections caused by such bacteria.
- Keywords
- Klebsiella pneumoniae, Biofilm formation, Carbapenemases, Multidrug resistance, Serum resistant, Virulence,
- MeSH
- Virulence Factors * genetics MeSH
- Genome, Bacterial MeSH
- Klebsiella Infections * microbiology genetics MeSH
- Klebsiella pneumoniae * genetics pathogenicity isolation & purification MeSH
- Humans MeSH
- Multilocus Sequence Typing MeSH
- Hospitals MeSH
- Plasmids genetics MeSH
- Whole Genome Sequencing MeSH
- Virulence genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Greece MeSH
- Names of Substances
- Virulence Factors * MeSH
Fosfomycin (FOS) has been recently reintroduced into clinical practice, but its effectiveness against multidrug-resistant (MDR) Enterobacterales is reduced due to the emergence of FOS resistance. The copresence of carbapenemases and FOS resistance could drastically limit antibiotic treatment. The aims of this study were (i) to investigate fosfomycin susceptibility profiles among carbapenem-resistant Enterobacterales (CRE) in the Czech Republic, (ii) to characterize the genetic environment of fosA genes among the collection, and (iii) to evaluate the presence of amino acid mutations in proteins involved in FOS resistance mechanisms. During the period from December 2018 to February 2022, 293 CRE isolates were collected from different hospitals in the Czech Republic. FOS MICs were assessed by the agar dilution method (ADM), FosA and FosC2 production was detected by the sodium phosphonoformate (PPF) test, and the presence of fosA-like genes was confirmed by PCR. Whole-genome sequencing was conducted with an Illumina NovaSeq 6000 system on selected strains, and the effect of point mutations in the FOS pathway was predicted using PROVEAN. Of these strains, 29% showed low susceptibility to fosfomycin (MIC, ≥16 μg/mL) by ADM. An NDM-producing Escherichia coli sequence type 648 (ST648) strain harbored a fosA10 gene on an IncK plasmid, while a VIM-producing Citrobacter freundii ST673 strain harbored a new fosA7 variant, designated fosA7.9. Analysis of mutations in the FOS pathway revealed several deleterious mutations occurring in GlpT, UhpT, UhpC, CyaA, and GlpR. Results regarding single substitutions in amino acid sequences highlighted a relationship between ST and specific mutations and an enhanced predisposition for certain STs to develop resistance. This study highlights the occurrence of several FOS resistance mechanisms in different clones spreading in the Czech Republic. IMPORTANCE Antimicrobial resistance (AMR) currently represents a concern for human health, and the reintroduction of antibiotics such as fosfomycin into clinical practice can provide further option in treatment of multidrug-resistant (MDR) bacterial infections. However, there is a global increase of fosfomycin-resistant bacteria, reducing its effectiveness. Considering this increase, it is crucial to monitor the spread of fosfomycin resistance in MDR bacteria in clinical settings and to investigate the resistance mechanism at the molecular level. Our study reports a large variety of fosfomycin resistance mechanisms among carbapenemase-producing Enterobacterales (CRE) in the Czech Republic. Our study summarizes the main achievements of our research on the use of molecular technologies, such as next-generation sequencing (NGS), to describe the heterogeneous mechanisms that reduce fosfomycin effectiveness in CRE. The results suggest that a program for widespread monitoring of fosfomycin resistance and epidemiology fosfomycin-resistant organisms can aide timely implementation of countermeasures to maintain the effectiveness of fosfomycin.
- Keywords
- Enterobacterales, WGS, carbapenemase producers, drug-resistance bacteria, fosfomycin,
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Drug Resistance, Bacterial genetics MeSH
- beta-Lactamases genetics MeSH
- Escherichia coli MeSH
- Fosfomycin * pharmacology MeSH
- Carbapenems pharmacology MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- beta-Lactamases MeSH
- carbapenemase MeSH Browser
- Fosfomycin * MeSH
- Carbapenems MeSH
The resistance to carbapenems is usually mediated by enzymes hydrolyzing β-lactam ring. Recently, an alternative way of the modification of the antibiotic, a β-lactone formation by OXA-48-like enzymes, in some carbapenems was identified. We focused our study on a deep analysis of OXA-48-like-producing Enterobacterales, especially strains showing poor hydrolytic activity. In this study, well characterized 74 isolates of Enterobacterales resistant to carbapenems were used. Carbapenemase activity was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), liquid chromatography/mass spectrometry (LC-MS), Carba-NP test and modified Carbapenem Inactivation Method (mCIM). As meropenem-derived β-lactone possesses the same molecular weight as native meropenem (MW 383.46 g/mol), β-lactonization cannot be directly detected by MALDI-TOF MS. In the spectra, however, the peaks of m/z = 340.5 and 362.5 representing decarboxylated β-lactone and its sodium adduct were detected in 25 out of 35 OXA-48-like producers. In the rest 10 isolates, decarboxylated hydrolytic product (m/z = 358.5) and its sodium adduct (m/z = 380.5) have been detected. The peak of m/z = 362.5 was detected in 3 strains co-producing OXA-48-like and NDM-1 carbapenemases. The respective signal was identified in no strain producing class A or class B carbapenemase alone showing its specificity for OXA-48-like carbapenemases. Using LC-MS, we were able to identify meropenem-derived β-lactone directly according to the different retention time. All strains with a predominant β-lactone production showed negative results of Carba NP test. In this study, we have demonstrated that the strains producing OXA-48-like carbapenemases showing false-negative results using Carba NP test and MALDI-TOF MS preferentially produced meropenem-derived β-lactone. We also identified β-lactone-specific peak in MALDI-TOF MS spectra and demonstrated the ability of LC-MS to detect meropenem-derived β-lactone.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacterial Proteins * analysis MeSH
- beta-Lactamases analysis MeSH
- Enterobacteriaceae * MeSH
- Carbapenems pharmacology MeSH
- Meropenem pharmacology MeSH
- Microbial Sensitivity Tests MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Bacterial Proteins * MeSH
- beta-Lactamases MeSH
- carbapenemase MeSH Browser
- Carbapenems MeSH
- Meropenem MeSH
BACKGROUND: VIM metallo-β-lactamases are enzymes characterized by the ability to hydrolyze all β-lactams. Usually, bla VIM-like genes are carried by class 1 integrons. In the Czech Republic, only sporadic cases of VIM-producing Enterobacterales have been reported in which those isolates carried the VIM-1 carbapenemase-encoding integron In110. However, during 2019-2020, an increased number was reported. Therefore, the aim of the current study was to characterize the genetic elements involved in the increased spread of bla VIM genes. MATERIALS AND METHODS: 32 VIM-producing Enterobacterales collected between 2019 and 2020 were subjected to: antimicrobial susceptibility testing, integron analysis, and short reads sequencing. Based on the results, 19 isolates were selected as representative and sequenced using Sequel I platform. RESULTS: The 32 VIM-producing isolates exhibited variations in the MICs of carbapenems. Based on short-read data, 26 of the 32 sequenced isolates harbored the bla VIM-1 allele while six isolates carried the bla VIM-4 gene. The most prevalent was the In110 integron (n = 24) and two isolates carried the In4873 class 1 integron. The bla VIM-4 allele was identified in class 1 integrons In1174 (n = 3), In416 (n = 1), In2143 (n = 1) and In2150. Long reads sequencing revealed that the bla VIM was carried by: pKPC-CAV1193-like (n = 6), HI1 (pNDM-CIT; n = 4), HI2 (n = 3), FIB (pECLA; n = 2) and N (n = 1) incompatibility groups. Two bla VIM-carrying plasmids could not be typed by the database, while another one was integrated into the chromosome. CONCLUSION: We observed the spread of VIM-encoding integrons, mainly of In110, among Enterobacterales isolated from Czech hospitals, but also an increased number of novel elements underlining the ongoing evolution.
- Keywords
- Enterobacterales, In110, blaVIM-1, blaVIM-4, integrons, plasmids, whole-genome sequencing,
- Publication type
- Journal Article MeSH