Nejvíce citovaný článek - PubMed ID 34436395
CeO2-Blended Cellulose Triacetate Mixed-Matrix Membranes for Selective CO2 Separation
Mixed-matrix membranes (MMMs) possess the unique properties and inherent characteristics of their component polymer and inorganic fillers, or other possible types of additives. However, the successful fabrication of compact and defect-free MMMs with a homogeneous filler distribution poses a major challenge, due to poor filler/polymer compatibility. In this study, we use two-dimensional multi-layered Ti3C2Tx MXene nanofillers to improve the compatibility and CO2/CH4 separation performance of cellulose triacetate (CTA)-based MMMs. CTA-based MMMs with TiO2-based 1D (nanotubes) and 0D (nanofillers) additives were also fabricated and tested for comparison. The high thermal stability, compact homogeneous structure, and stable long-term CO2/CH4 separation performance of the CTA-2D samples suggest the potential application of the membrane in bio/natural gas separation. The best results were obtained for the CTA-2D sample with a loading of 3 wt.%, which exhibited a 5-fold increase in CO2 permeability and 2-fold increase in CO2/CH4 selectivity, compared with the pristine CTA membrane, approaching the state-of-the-art Robeson 2008 upper bound. The dimensional (shape) effect on separation performance was determined as 2D > 1D > 0D. The use of lamellar stacked MXene with abundant surface-terminating groups not only prevents the aggregation of particles but also enhances the CO2 adsorption properties and provides additional transport channels, resulting in improved CO2 permeability and CO2/CH4 selectivity.
- Klíčová slova
- MXene, TiO2 nanoparticles, TiO2 nanotube, cellulose triacetate, gas separation, mixed-matrix membrane,
- Publikační typ
- časopisecké články MeSH
This study explored the underlying synergy between titanium dioxide nanotube (TNT) and carbon nanotube (CNT) hybrid fillers in cellulose triacetate (CTA)-based mixed matrix membranes (MMMs) for natural gas purification. The CNT@TNT hybrid nanofillers were blended with CTA polymer and cast as a thin film by a facile casting technique, after which they were used for single gas separation. The hybrid filler-based membrane depicted a higher CO2 uptake affinity than the single filler (CNT/TNT)-based membrane. The gas separation results indicate that the hybrid fillers (TNT@CNT) are strongly selective for CO2 over CH4 and H2 over CH4. The increment in the CO2/CH4 and H2/CH4 selectivities compared to the pristine CTA membrane was 42.98 from 25.08 and 48.43 from 36.58, respectively. Similarly, the CO2 and H2 permeability of the CTA-TNT@CNT membrane increased by six- and five-fold, respectively, compared to the pristine CTA membrane. Such significant improvements in CO2/CH4 and H2/CH4 separation performance and thermal and mechanical properties suggest a feasible and practical approach for potential biogas upgrading and natural gas purification.
- Klíčová slova
- CO2 and CH4 separation, TNT@CNT hybrid fillers, cellulose triacetate polymer, mixed matrix membranes,
- Publikační typ
- časopisecké články MeSH
The study of the effects associated with the compatibility of the components of the hybrid filler with polymer matrix, which ultimately decide on achieving mixed matrix membranes (MMMs) with better gas separation properties, is essential. Herein, a facile solution casting process of simple incorporating CeO2@GO hybrid inorganic filler material is implemented. Significant improvements in material and physico-chemical properties of the synthesized membranes were observed by SEM, XRD, TGA, and stress-strain measurements. Usage of graphene oxide (GO) with polar groups on the surface enabled forming bonds with ceria (CeO2) nanoparticles and CTA polymer and provided the homogeneous dispersion of the nanofillers in the hybrid MMMs. Moreover, increasing GO loading concentration enhanced both gas permeation in MMMs and CO2 gas uptakes. The best performance was achieved by the membrane containing 7 wt.% of GO with CO2 permeability of 10.14 Barrer and CO2/CH4 selectivity 50.7. This increase in selectivity is almost fifteen folds higher than the CTA-CeO2 membrane sample, suggesting the detrimental effect of GO for enhancing the selectivity property of the MMMs. Hence, a favorable synergistic effect of CeO2@GO hybrid fillers on gas separation performance is observed, propounding the efficient and feasible strategy of using hybrid fillers in the membrane for the potential biogas upgrading process.
- Klíčová slova
- CeO2@GO hybrid fillers, cellulose triacetate, gas separation, mixed-matrix membrane,
- Publikační typ
- časopisecké články MeSH