Most cited article - PubMed ID 34611158
Understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe
Evaluating and understanding the financial impacts of COVID-19 has emerged as an urgent research agenda. Nevertheless, the impacts of government interventions on stock markets remain poorly understood. This study explores, for the first time, the impact of COVID-19 related government intervention policies on different stock market sectors using explainable machine learning-based prediction models. The empirical findings suggest that the LightGBM model provides excellent prediction accuracy while preserving computationally efficient and easy explainability of the model. We also find that COVID-19 government interventions are better predictors of stock market volatility than stock market returns. We further show that the observed effects of government intervention on the volatility and returns of ten stock market sectors are heterogeneous and asymmetrical. Our findings have important implications for policymakers and investors in terms of promoting balance and sustaining prosperity across industry sectors through government interventions.
- Keywords
- COVID-19, Government interventions, SHapley Additive exPlanations, Stock market,
- Publication type
- Journal Article MeSH
Although seasonal variation has a known influence on the transmission of several respiratory viral infections, its role in SARS-CoV-2 transmission remains unclear. While there is a sizable and growing literature on environmental drivers of COVID-19 transmission, recent reviews have highlighted conflicting and inconclusive findings. This indeterminacy partly owes to the fact that seasonal variation relates to viral transmission by a complicated web of causal pathways, including many interacting biological and behavioural factors. Since analyses of specific factors cannot determine the aggregate strength of seasonal forcing, we sidestep the challenge of disentangling various possible causal paths in favor of a holistic approach. We model seasonality as a sinusoidal variation in transmission and infer a single Bayesian estimate of the overall seasonal effect. By extending two state-of-the-art models of non-pharmaceutical intervention (NPI) effects and their datasets covering 143 regions in temperate Europe, we are able to adjust our estimates for the role of both NPIs and mobility patterns in reducing transmission. We find strong seasonal patterns, consistent with a reduction in the time-varying reproduction number R(t) (the expected number of new infections generated by an infectious individual at time t) of 42.1% (95% CI: 24.7%-53.4%) from the peak of winter to the peak of summer. These results imply that the seasonality of SARS-CoV-2 transmission is comparable in magnitude to the most effective individual NPIs but less than the combined effect of multiple interventions.
- MeSH
- Bayes Theorem MeSH
- COVID-19 * epidemiology MeSH
- Humans MeSH
- Climate MeSH
- Seasons MeSH
- SARS-CoV-2 * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
European governments use non-pharmaceutical interventions (NPIs) to control resurging waves of COVID-19. However, they only have outdated estimates for how effective individual NPIs were in the first wave. We estimate the effectiveness of 17 NPIs in Europe's second wave from subnational case and death data by introducing a flexible hierarchical Bayesian transmission model and collecting the largest dataset of NPI implementation dates across Europe. Business closures, educational institution closures, and gathering bans reduced transmission, but reduced it less than they did in the first wave. This difference is likely due to organisational safety measures and individual protective behaviours-such as distancing-which made various areas of public life safer and thereby reduced the effect of closing them. Specifically, we find smaller effects for closing educational institutions, suggesting that stringent safety measures made schools safer compared to the first wave. Second-wave estimates outperform previous estimates at predicting transmission in Europe's third wave.
- MeSH
- Time Factors MeSH
- COVID-19 epidemiology virology MeSH
- Humans MeSH
- SARS-CoV-2 physiology MeSH
- Models, Theoretical MeSH
- Government * MeSH
- Basic Reproduction Number MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe epidemiology MeSH