Nejvíce citovaný článek - PubMed ID 34742912
Hydroxyl radical footprinting analysis of a human haptoglobin-hemoglobin complex
Fast Photochemical Oxidation of Proteins (FPOP) is a protein footprinting method utilizing hydroxyl radicals to provide valuable information on the solvent-accessible surface area. The extensive number of oxidative modifications that are created by FPOP is both advantageous, leading to great spatial resolution, and challenging, increasing the complexity of data processing. The precise localization of the modification together with the appropriate reproducibility is crucial to obtain relevant structural information. In this paper, we propose a novel approach combining validated spectral libraries together with utilizing DIA data. First, the DDA data searched by FragPipe are subsequently validated using Skyline software to form a spectral library. This library is then matched against the DIA data to filter out nonrepresentative IDs. In comparison with FPOP data processing using only a search engine followed by generally applied filtration steps, the manually validated spectral library offers higher confidence in identifications and increased spatial resolution. Furthermore, the reproducibility of quantification was compared for DIA, DDA, and MS-only acquisition modes on timsTOF SCP. Comparison of coefficients of variation (CV) showed that the DIA and MS acquisition modes exhibit significantly better reproducibility in quantification (CV medians 0.1233 and 0.1494, respectively) compared to the DDA mode (CV median 0.2104).
- MeSH
- fotochemické procesy * MeSH
- hydroxylový radikál chemie analýza MeSH
- oxidace-redukce * MeSH
- proteiny * chemie analýza MeSH
- software MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydroxylový radikál MeSH
- proteiny * MeSH
Flavin mononucleotide (FMN) is a highly efficient photosensitizer (PS) yielding singlet oxygen (1 O2 ). However, its 1 O2 production efficiency significantly decreases upon isoalloxazine ring encapsulation into the protein matrix in genetically encoded photosensitizers (GEPS). Reducing isoalloxazine ring interactions with surrounding amino acids by protein engineering may increase 1 O2 production efficiency GEPS, but at the same time weakened native FMN-protein interactions may cause undesirable FMN dissociation. Here, in contrast, we intentionally induce the FMN release by light-triggered sulfur oxidation of strategically placed cysteines (oxidation-prone amino acids) in the isoalloxazine-binding site due to significantly increased volume of the cysteinyl side residue(s). As a proof of concept, in three variants of the LOV2 domain of Avena sativa (AsLOV2), namely V416C, T418C, and V416C/T418C, the effective 1 O2 production strongly correlated with the efficiency of irradiation-induced FMN dissociation (wild type (WT) < V416C < T418C < V416C/T418C). This alternative approach enables us: (i) to overcome the low 1 O2 production efficiency of flavin-based GEPSs without affecting native isoalloxazine ring-protein interactions and (ii) to utilize AsLOV2, due to its inherent binding propensity to FMN, as a PS vehicle, which is released at a target by light irradiation.
- Klíčová slova
- LOV2 domain, flavin cofactor, genetically encoded photosensitizers, miniSOG, singlet oxygen,
- MeSH
- aminokyseliny MeSH
- flavinmononukleotid chemie MeSH
- flavoproteiny * chemie metabolismus MeSH
- fotosenzibilizující látky * MeSH
- proteinové domény MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- flavinmononukleotid MeSH
- flavoproteiny * MeSH
- fotosenzibilizující látky * MeSH
Fast Photochemical Oxidation of Proteins (FPOP) is a promising technique for studying protein structure and dynamics. The quality of insight provided by FPOP depends on the reliability of the determination of the modification site. This study investigates the performance of two search engines, Mascot and PEAKS, for the data processing of FPOP analyses. Comparison of Mascot and PEAKS of the hemoglobin--haptoglobin Bruker timsTOF data set (PXD021621) revealed greater consistency in the Mascot identification of modified peptides, with around 26% of the IDs being mutual for all three replicates, compared to approximately 22% for PEAKS. The intersection between Mascot and PEAKS results revealed a limited number (31%) of shared modified peptides. Principal Component Analysis (PCA) using the peptide-spectrum match (PSM) score, site probability, and peptide intensity was applied to evaluate the results, and the analyses revealed distinct clusters of modified peptides. Mascot showed the ability to assess confident site determination, even with lower PSM scores. However, high PSM scores from PEAKS did not guarantee a reliable determination of the modification site. Fragmentation coverage of the modification position played a crucial role in Mascot assignments, while the AScore localizations from PEAKS often become ambiguous because the software employs MS/MS merging.
- Klíčová slova
- FPOP, search engine, structural proteomics,
- MeSH
- peptidy * analýza MeSH
- proteiny analýza MeSH
- reprodukovatelnost výsledků MeSH
- software MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peptidy * MeSH
- proteiny MeSH
Protein radical labeling, like fast photochemical oxidation of proteins (FPOP), coupled to a top-down mass spectrometry (MS) analysis offers an alternative analytical method for probing protein structure or protein interaction with other biomolecules, for instance, proteins and DNA. However, with the increasing mass of studied analytes, the MS/MS spectra become complex and exhibit a low signal-to-noise ratio. Nevertheless, these difficulties may be overcome by protein isotope depletion. Thus, we aimed to use protein isotope depletion to analyze FPOP-oxidized samples by top-down MS analysis. For this purpose, we prepared isotopically natural (IN) and depleted (ID) forms of the FOXO4 DNA binding domain (FOXO4-DBD) and studied the protein-DNA interaction interface with double-stranded DNA, the insulin response element (IRE), after exposing the complex to hydroxyl radicals. As shown by comparing tandem mass spectra of natural and depleted proteins, the ID form increased the signal-to-noise ratio of useful fragment ions, thereby enhancing the sequence coverage by more than 19%. This improvement in the detection of fragment ions enabled us to detect 22 more oxidized residues in the ID samples than in the IN sample. Moreover, less common modifications were detected in the ID sample, including the formation of ketones and lysine carbonylation. Given the higher quality of ID top-down MSMS data set, these results provide more detailed information on the complex formation between transcription factors and DNA-response elements. Therefore, our study highlights the benefits of isotopic depletion for quantitative top-down proteomics. Data are available via ProteomeXchange with the identifier PXD044447.
- MeSH
- DNA MeSH
- ionty MeSH
- izotopy MeSH
- proteiny * analýza MeSH
- tandemová hmotnostní spektrometrie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- ionty MeSH
- izotopy MeSH
- proteiny * MeSH
Fast photochemical oxidation of proteins (FPOP) footprinting is a structural mass spectrometry method that maps proteins by fast and irreversible chemical reactions. The position of oxidative modification reflects solvent accessibility and site reactivity and thus provides information about protein conformation, structural dynamics, and interactions. Bottom-up mass spectrometry is an established standard method to analyze FPOP samples. In the bottom-up approach, all forms of the protein are digested together by a protease of choice, which results in a mixture of peptides from various subpopulations of proteins with varying degrees of photochemical oxidation. Here, we investigate the possibility to analyze a specifically selected population of only singly oxidized proteins. This requires utilization of more specific top-down mass spectrometry approaches. The key element of any top-down experiment is the selection of a suitable method of ion isolation, excitation, and fragmentation. Here, we employ and compare collision-induced dissociation, electron-transfer dissociation, and electron-capture dissociation combined with multi-continuous accumulation of selected ions. A singly oxidized subpopulation of FPOP-labeled ubiquitin was used to optimize the method. The top-down approach in FPOP is limited to smaller proteins, but its usefulness was demonstrated by using it to visualize structural changes induced by co-factor removal from the holo/apo myoglobin system. The top-down data were compared with the literature and with the bottom-up data set obtained on the same samples. The top-down results were found to be in good agreement, which indicates that monitoring a singly oxidized FPOP ion population by the top-down approach is a functional workflow for oxidative protein footprinting.
- MeSH
- elektrony * MeSH
- footprinting proteinů * metody MeSH
- konformace proteinů MeSH
- myoglobin chemie MeSH
- oxidační stres MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- myoglobin MeSH