Most cited article - PubMed ID 34783080
The Development of Dentin Microstructure Is Controlled by the Type of Adjacent Epithelium
Mineralized tissues, such as bones or teeth, are essential structures of all vertebrates. They enable rapid movement, protection, and food processing, in addition to providing physiological functions. Although the development, regeneration, and pathogenesis of teeth and bones have been intensely studied, there is currently no tool to accurately follow the dynamics of growth and healing of these vital tissues in space and time. Here, we present the BEE-ST (Bones and tEEth Spatio-Temporal growth monitoring) approach, which allows precise quantification of development, regeneration, remodeling, and healing in any type of calcified tissue across different species. Using mouse teeth as model the turnover rate of continuously growing incisors was quantified, and role of hard/soft diet on molar root growth was shown. Furthermore, the dynamics of bones and teeth growth in lizards, frogs, birds, and zebrafish was uncovered. This approach represents an effective, highly reproducible, and versatile tool that opens up diverse possibilities in developmental biology, bone and tooth healing, tissue engineering, and disease modeling.
- MeSH
- Zebrafish * MeSH
- Bone and Bones MeSH
- Mice MeSH
- Bone Development MeSH
- Tooth Root MeSH
- Tooth * physiology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Recent years have improved our understanding of the plasticity of cell types behind inducing, building, and maintaining different types of teeth. The latest efforts were aided by progress in single-cell transcriptomics, which helped to define not only cell states with mathematical precision but also transitions between them. This includes new aspects of dental epithelial and mesenchymal stem cell niches and beyond. These recent efforts revealed continuous and fluid trajectories connecting cell states during dental development and exposed the natural plasticity of tooth-building progenitors. Such "developmental" plasticity seems to be employed for organizing stem cell niches in adult continuously growing teeth. Furthermore, transitions between mature cell types elicited by trauma might represent a replay of embryonic continuous cell states. Alternatively, they could constitute transitions that evolved de novo, not known from the developmental paradigm. In this review, we discuss and exemplify how dental cell types exhibit plasticity during dynamic processes such as development, self-renewal, repair, and dental replacement. Hypothetically, minor plasticity of cell phenotypes and greater plasticity of transitions between cell subtypes might provide a better response to lifetime challenges, such as damage or dental loss. This plasticity might be additionally harnessed by the evolutionary process during the elaboration of dental cell subtypes in different animal lineages. In turn, the diversification of cell subtypes building teeth brings a diversity of their shape, structural properties, and functions.
- Keywords
- cell differentiation, dental informatics/bioinformatics, developmental biology, single-cell RNA-seq, stem cell(s), tooth development,
- MeSH
- Regeneration physiology MeSH
- Tooth * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH