Nejvíce citovaný článek - PubMed ID 34878125
The Exposome and Toxicology: A Win-Win Collaboration
Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.
- Klíčová slova
- Environment, Exposome, Exposure, GxE, Human Health, Molecular Biology, Toxicology,
- MeSH
- expozom * MeSH
- lidé MeSH
- molekulární biologie MeSH
- vystavení vlivu životního prostředí * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA.
- Klíčová slova
- Adverse outcome pathways, Biomarkers of effect, Hazard assessment, Mechanistic toxicology, New approach methodologies, Regulatory risk assessment,
- MeSH
- dráhy škodlivých účinků * MeSH
- hodnocení rizik metody MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The exposome concept encourages holistic consideration of the non-genetic factors (environmental exposures including lifestyle) that influence an individual's health over their life course. However, disconnect between the concept and practical application has promoted divergent interpretations of the exposome across disciplines and reinforced separation of the environmental (emphasizing exposures) and biological (emphasizing responses) research communities. In particular, while knowledge of biological responses can help to distinguish actual (i.e. experienced) from potential exposures, the inclusion of endogenous processes has generated confusion about the position of the exposome in a multi-omics systems biology context. We propose a reattribution of "exposome" to exclusively represent the totality of contact with external factors that a biological entity experiences, and introduce the term "functional exposomics" to denote the systematic study of exposure-phenotype interaction. This reoriented definition of the exposome allows a more readily integrable dataset for multi-omics and systems biology research.
- Klíčová slova
- Environmental health, Exposure assessment, Omics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH