Nejvíce citovaný článek - PubMed ID 35050987
Insect Body Defence Reactions against Bee Venom: Do Adipokinetic Hormones Play a Role?
The primary aim of this study was to analyse the influence of honeybee venom on various aspects of Drosophila melanogaster physiology and to assess the efficacy of adipokinetic hormone (AKH) in mitigating venom toxicity. We examined the harmful effects of venom on the thoracic muscles and central nervous system of Drosophila, as well as the potential use of AKH to counteract these effects. The results demonstrated that envenomation altered AKH levels in the Drosophila CNS, promoted cell metabolism, as evidenced by an increase in citrate synthase activity in muscles, and improved relative cell viability in both organs incubated in vitro. Furthermore, venom treatment reduced the activity of two key antioxidative stress enzymes, superoxide dismutase and catalase, and modified the expression of six genes encoding immune system components (Keap1, Relish, Nox, Eiger, Gadd45, and Domeless) in both organs. The venom also disrupted muscle cell ultrastructure, specifically myofibrils, and increased the release of arginine kinase into the incubation medium. Notably, when administered alongside the venom, AKH influenced the majority of these changes. AKH was the most effective in minimising damage to the ultrastructure of muscle cells and preventing the release of arginine kinase from muscles to the medium; however, in other parameters, the effect was modest or minimal. Given that honeybee venom often affects humans, understanding its actions and potential ways to reduce or eliminate them is valuable and could lead to the development of pharmacologically important compounds that may have clinical relevance.
- Klíčová slova
- Adipokinetic hormone, Arginine kinase, Bee venom, Drosophila model, Immune responsible genes, Muscle structure,
- MeSH
- centrální nervový systém účinky léků metabolismus MeSH
- Drosophila melanogaster účinky léků metabolismus MeSH
- hmyzí hormony * farmakologie metabolismus MeSH
- kyselina pyrrolidonkarboxylová * analogy a deriváty farmakologie metabolismus MeSH
- oligopeptidy * farmakologie metabolismus MeSH
- včelí jedy * toxicita antagonisté a inhibitory MeSH
- včely MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adipokinetic hormone MeSH Prohlížeč
- hmyzí hormony * MeSH
- kyselina pyrrolidonkarboxylová * MeSH
- oligopeptidy * MeSH
- včelí jedy * MeSH
Insect vitellogenins are an intriguing class of complex proteins. They primarily serve as a source of energy for the developing embryo in insect eggs. Vitellogenesis is a complex hormonally and neurally controlled process that command synthesis of vitellogenin molecules and ensures their transport from the female fat bodies or ovarial cells into eggs. The representatives of all insect hormones such as juvenile hormones, ecdysteroids, and neurohormones participate in vitellogenesis, but juvenile hormones (most insect species) and ecdysteroids (mostly Diptera) play the most important roles in the process. Strikingly, not only insect females, but also males have been reported to synthesize vitellogenins indicating their further utility in the insect body. Indeed, it has recently been found that vitellogenins perform a variety of biological functions in the insect body. They participate in defense reactions against entomopathogens such as nematodes, fungi, and bacteria, as well as against venoms such as the honeybee Apis mellifera venom. Interestingly, vitellogenins are also present in the venom of the honeybee itself, albeit their exact role is unknown; they most likely increase the efficacy of the venom in the victim's body. Within the bee's body vitellogenins contribute to the lifespan regulation as anti-aging factor acting under tight social interactions and hormonal control. The current minireview covers all of these functions of vitellogenins and portrays them as biologically active substances that play a variety of significant roles in both insect females and males, and not only acting as passive energy sources for developing embryo.
- MeSH
- ekdysteroidy * metabolismus MeSH
- hmyz metabolismus MeSH
- juvenilní hormony metabolismus MeSH
- ovarium metabolismus MeSH
- vitelogeniny * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- ekdysteroidy * MeSH
- juvenilní hormony MeSH
- vitelogeniny * MeSH