Most cited article - PubMed ID 35218444
High-light-inducible proteins HliA and HliB: pigment binding and protein-protein interactions
The biogenesis of Photosystem II is a complicated process requiring numerous auxiliary factors to assist in all steps of its assembly. The cyanobacterial protein Ycf39 forms a stress-induced complex with 2 small chlorophyll-binding, High-light-inducible proteins C and D (HliC and HliD), and has been reported to participate in the insertion of chlorophyll molecules into the central D1 subunit of Photosystem II. However, how this process is organized remains unknown. Here, we show that Ycf39 and both HliC and HliD can form distinct complexes with chlorophyll synthase (ChlG) in the model cyanobacterium Synechocystis sp. PCC 6803. We isolated and characterized ChlG complexes from various strains grown under different conditions and provide a mechanistic view of the docking of Ycf39 to ChlG via HliD and the structural role of HliC. In the absence of stress, chlorophyll is produced by the ChlG-HliD2-ChlG complex, which is stabilized by chlorophyll and zeaxanthin molecules bound to the HliD homodimer. The switch to high light leads to stress pressure and greatly elevated synthesis of HliC, resulting in the replacement of HliD homodimers with HliC-HliD heterodimers. Unlike HliD, HliC cannot interact directly with ChlG or Ycf39. Therefore, the original ChlG-HliD2-ChlG complex is converted into a ChlG-HliD-HliC hetero-trimer that presumably binds transiently to Ycf39 and the nascent D1 polypeptide. We speculate that this molecular machinery promotes the delivery of chlorophyll to D1 upon high-light-induced chlorophyll deficiency. The HliD homodimers formed under standard, nonstress growth conditions and attached to ChlG could serve as an emergency chlorophyll reserve.
- MeSH
- Bacterial Proteins * metabolism genetics MeSH
- Chlorophyll metabolism MeSH
- Photosystem II Protein Complex * metabolism MeSH
- Carbon-Oxygen Ligases * metabolism genetics MeSH
- Light * MeSH
- Synechocystis * metabolism radiation effects genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins * MeSH
- Chlorophyll MeSH
- chlorophyll synthetase MeSH Browser
- Photosystem II Protein Complex * MeSH
- high light-inducible protein, cyanobacteria MeSH Browser
- Carbon-Oxygen Ligases * MeSH
- Light-Harvesting Protein Complexes MeSH
The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.
- MeSH
- Chlorophyll metabolism MeSH
- Photosynthesis MeSH
- Photosystem II Protein Complex * metabolism MeSH
- Cyanobacteria * metabolism MeSH
- Thylakoids metabolism MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Chlorophyll MeSH
- Photosystem II Protein Complex * MeSH
FtsH proteases are membrane-embedded proteolytic complexes important for protein quality control and regulation of various physiological processes in bacteria, mitochondria, and chloroplasts. Like most cyanobacteria, the model species Synechocystis sp. PCC 6803 contains four FtsH homologs, FtsH1-FtsH4. FtsH1-FtsH3 form two hetero-oligomeric complexes, FtsH1/3 and FtsH2/3, which play a pivotal role in acclimation to nutrient deficiency and photosystem II quality control, respectively. FtsH4 differs from the other three homologs by the formation of a homo-oligomeric complex, and together with Arabidopsis thaliana AtFtsH7/9 orthologs, it has been assigned to another phylogenetic group of unknown function. Our results exclude the possibility that Synechocystis FtsH4 structurally or functionally substitutes for the missing or non-functional FtsH2 subunit in the FtsH2/3 complex. Instead, we demonstrate that FtsH4 is involved in the biogenesis of photosystem II by dual regulation of high light-inducible proteins (Hlips). FtsH4 positively regulates expression of Hlips shortly after high light exposure but is also responsible for Hlip removal under conditions when their elevated levels are no longer needed. We provide experimental support for Hlips as proteolytic substrates of FtsH4. Fluorescent labeling of FtsH4 enabled us to assess its localization using advanced microscopic techniques. Results show that FtsH4 complexes are concentrated in well-defined membrane regions at the inner and outer periphery of the thylakoid system. Based on the identification of proteins that co-purified with the tagged FtsH4, we speculate that FtsH4 concentrates in special compartments in which the biogenesis of photosynthetic complexes takes place.
- Keywords
- FtsH4, high light-inducible protein, photosystem II biogenesis, proteolysis, thylakoid,
- MeSH
- Arabidopsis * genetics metabolism MeSH
- Chloroplasts metabolism MeSH
- Photosystem II Protein Complex genetics metabolism MeSH
- Phylogeny MeSH
- Metalloproteases genetics metabolism MeSH
- Peptide Hydrolases MeSH
- Arabidopsis Proteins * genetics metabolism MeSH
- Synechocystis * genetics metabolism MeSH
- Thylakoids metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Photosystem II Protein Complex MeSH
- FtsH4 protein, Arabidopsis MeSH Browser
- Metalloproteases MeSH
- Peptide Hydrolases MeSH
- Arabidopsis Proteins * MeSH
Assembly of photosystem II (PSII), a water-splitting catalyst in chloroplasts and cyanobacteria, requires numerous auxiliary proteins which promote individual steps of this sequential process and transiently associate with one or more assembly intermediate complexes. In this study, we focussed on the role of a PSII-associated protein encoded by the ssl1498 gene in the cyanobacterium Synechocystis sp. PCC 6803. The N-terminal domain of this protein, which is here called Psb34, is very similar to the N-terminus of HliA/B proteins belonging to a family of high-light-inducible proteins (Hlips). Psb34 was identified in both dimeric and monomeric PSII, as well as in a PSII monomer lacking CP43 and containing Psb28. When FLAG-tagged, the protein is co-purified with these three complexes and with the PSII auxiliary proteins Psb27 and Psb28. However, the preparation also contained the oxygen-evolving enhancers PsbO and PsbV and lacked HliA/B proteins even when isolated from high-light-treated cells. The data suggest that Psb34 competes with HliA/B for the same binding site and that it is one of the components involved in the final conversion of late PSII assembly intermediates into functional PSII complexes, possibly keeping them free of Hlips. Unlike HliA/B, Psb34 does bind to the CP47 assembly module before its incorporation into PSII. Analysis of strains lacking Psb34 indicates that Psb34 mediates the optimal equilibrium of HliA/B binding among individual PSII assembly intermediates containing CP47, allowing Hlip-mediated photoprotection at all stages of PSII assembly.
- Keywords
- CP47, High-light-inducible protein, Photosynthesis, Photosystem II,
- MeSH
- Bacterial Proteins metabolism MeSH
- Photosynthesis MeSH
- Photosystem II Protein Complex metabolism MeSH
- Tumor Necrosis Factor Ligand Superfamily Member 14 metabolism MeSH
- Synechocystis * metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Photosystem II Protein Complex MeSH
- Tumor Necrosis Factor Ligand Superfamily Member 14 MeSH