Most cited article - PubMed ID 35472278
Different Mechanisms of DNA Radiosensitization by 8-Bromoadenosine and 2'-Deoxy-2'-fluorocytidine Observed on DNA Origami Nanoframe Supports
DNA nanotechnology has emerged as a groundbreaking field, using DNA as a scaffold to create nanostructures with customizable properties. These DNA nanostructures hold potential across various domains, from biomedicine to studying ionizing radiation-matter interactions at the nanoscale. This review explores how the various types of radiation, covering a spectrum from electrons and photons at sub-excitation energies to ion beams with high-linear energy transfer influence the structural integrity of DNA origami nanostructures. We discuss both direct effects and those mediated by secondary species like low-energy electrons (LEEs) and reactive oxygen species (ROS). Further we discuss the possibilities for applying radiation in modulating and controlling structural changes. Based on experimental insights, we identify current challenges in characterizing the responses of DNA nanostructures to radiation and outline further areas for investigation. This review not only clarifies the complex dynamics between ionizing radiation and DNA origami but also suggests new strategies for designing DNA nanostructures optimized for applications exposed to various qualities of ionizing radiation and their resulting byproducts.
- Keywords
- DNA damage, DNA structures, Nanostructures, Nanotechnology,
- MeSH
- DNA * chemistry MeSH
- Electrons MeSH
- Radiation, Ionizing MeSH
- Nucleic Acid Conformation radiation effects MeSH
- Nanostructures * chemistry MeSH
- Nanotechnology * MeSH
- Reactive Oxygen Species chemistry MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- DNA * MeSH
- Reactive Oxygen Species MeSH
This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.
- Publication type
- Journal Article MeSH
- Review MeSH