Nejvíce citovaný článek - PubMed ID 35631712
Priming with Small Molecule-Based Biostimulants to Improve Abiotic Stress Tolerance in Arabidopsis thaliana
We have developed and validated a novel LC-MS/MS method for simultaneously analyzing amino acids, biogenic amines, and their acetylated and methylated derivatives in plants. This method involves a one-step extraction of 2-5 mg of lyophilized plant material followed by fractionation of different biogenic amine forms, and exploits an efficient combination of hydrophilic interaction liquid chromatography (HILIC), reversed phase (RP) chromatography with pre-column derivatization, and tandem mass spectrometry (MS). This approach enables high-throughput processing of plant samples, significantly reducing the time needed for analysis and its cost. We also present a new synthetic route for deuterium-labeled polyamines. The LC-MS/MS method was rigorously validated by quantifying levels of nitrogen-related metabolites in seedlings of seven plant species, including Arabidopsis, maize, and barley, all of which are commonly used model organisms in plant science research. Our results revealed substantial variations in the abundance of these metabolites between species, developmental stages, and growth conditions, particularly for the acetylated and methylated derivatives and the various polyamine fractions. However, the biological relevance of these plant metabolites is currently unclear. Overall, this work contributes significantly to plant science by providing a powerful analytical tool and setting the stage for future investigations into the functions of these nitrogen-related metabolites in plants.
- Klíčová slova
- Acetylated amino acids, LC-MS/MS, acetylated biogenic amines, amino acids, biogenic amines, methylated amino acids, plant metabolism,
- MeSH
- Arabidopsis metabolismus růst a vývoj MeSH
- chromatografie kapalinová MeSH
- dusík * metabolismus MeSH
- ječmen (rod) metabolismus růst a vývoj MeSH
- kapalinová chromatografie-hmotnostní spektrometrie MeSH
- kukuřice setá metabolismus růst a vývoj MeSH
- polyaminy metabolismus analýza MeSH
- rostliny metabolismus MeSH
- tandemová hmotnostní spektrometrie * metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík * MeSH
- polyaminy MeSH
Putrescine (Put) is a promising small molecule-based biostimulant to enhance plant growth and resilience, though its mode of action remains unclear. This study investigated the Put priming effect on Arabidopsis mutant lines (Atadc1, Atadc2, Atnata1, and Atnata2) under control conditions and salinity to understand its role in regulating plant growth. The Atadc2 mutant, characterized by reduced endogenous Put levels, showed insensitivity to Put priming without growth enhancement, which was linked to significant imbalances in nitrogen metabolism, including a high Gln/Glu ratio. Contrarily, the Atnata2 mutant exhibited significant growth improvement and upregulated AtADC2 expression, particularly under Put priming, highlighting these genes' involvement in regulating plant development. Put priming enhanced plant growth by inducing the accumulation of specific polyamines (free, acetylated, conjugated, or bound form) and improving light-harvesting efficiency, particularly in the Atnata2 line. Our findings suggest that AtNATA2 may negatively regulate Put synthesis and accumulation via AtADC2 in the chloroplast, impacting light harvesting in photosystem II (PSII). Furthermore, the Atadc2 mutant line exhibited upregulated AtADC1 but reduced AcPut levels, pointing to a cross-regulation among these genes. The regulation by AtNATA2 on AtADC2 and AtADC2 on AtADC1 could be crucial for plant growth and overall stress tolerance by interacting with polyamine catabolism, which shapes the plant metabolic profile under different growth conditions. Understanding the regulatory mechanisms involving crosstalk between AtADC and AtNATA genes in polyamine metabolism and the connection with certain SMBBs like Put can lead to more effective agricultural practices, improving plant growth, nitrogen uptake, and resilience under challenging conditions.
- MeSH
- Arabidopsis * genetika růst a vývoj fyziologie metabolismus MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- mutace ztráty funkce MeSH
- polyaminy metabolismus MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- putrescin * metabolismus MeSH
- regulace genové exprese u rostlin * MeSH
- tolerance k soli * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosystém II (proteinový komplex) MeSH
- polyaminy MeSH
- proteiny huseníčku * MeSH
- putrescin * MeSH
Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.
- Klíčová slova
- Lobularia maritima, biopotential, halophyte, molecular mechanisms, phytochemicals, stress genes,
- MeSH
- Brassicaceae * metabolismus MeSH
- chlorid sodný farmakologie MeSH
- fyziologická adaptace MeSH
- halotolerantní rostliny * genetika MeSH
- lidé MeSH
- vývoj rostlin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- chlorid sodný MeSH
Commercial interest in biostimulants as a tool for sustainable green economics and agriculture concepts is on a steep rise, being followed by increasing demand to employ efficient scientific methods to develop new products and understand their mechanisms of action. Biostimulants represent a highly diverse group of agents derived from various natural sources. Regardless of their nutrition content and composition, they are classified by their ability to improve crop performance through enhanced nutrient use efficiency, abiotic stress tolerance, and quality of crops. Numerous reports have described modern, non-invasive sensor-based phenotyping methods in plant research. This review focuses on applying phenotyping approaches in biostimulant research and development, and maps the evolution of interaction of these two intensively growing domains. How phenotyping served to identify new biostimulants, the description of their biological activity, and the mechanism/mode of action are summarized. Special attention is dedicated to the indoor high-throughput methods using model plants suitable for biostimulant screening and developmental pipelines, and high-precision approaches used to determine biostimulant activity. The need for a complex method of testing biostimulants as multicomponent products through integrating other -omic approaches followed by advanced statistical/mathematical tools is emphasized.
- Klíčová slova
- -omics, High-throughput screening, mechanism of action, mode of action, plant biostimulants, plant breeding, plant phenotyping, sensors,
- MeSH
- fyziologický stres * MeSH
- výzkum MeSH
- zemědělské plodiny * MeSH
- zemědělství metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH