Nejvíce citovaný článek - PubMed ID 35869369
Selective footprinting of 40S and 80S ribosome subpopulations (Sel-TCP-seq) to study translation and its control
Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response, leading cells toward adaptation or death. ATF4's induction under stress was thought to be due to delayed translation reinitiation, where the reinitiation-permissive upstream open reading frame 1 (uORF1) plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrated that the canonical ATF4 translation start site is substantially leaky scanned. Thus, ATF4's translational control is more complex than originally described, underpinning its key role in diverse biological processes.
- Klíčová slova
- ATF4, CP: Molecular biology, integrated stress response, ribosome, ribosome queuing, translation reinitiation, translational control, unfolded protein response,
- MeSH
- fyziologický stres MeSH
- HEK293 buňky MeSH
- lidé MeSH
- otevřené čtecí rámce * genetika MeSH
- proteosyntéza * MeSH
- ribozomy * metabolismus MeSH
- sekvence nukleotidů MeSH
- transkripční faktor ATF4 * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ATF4 protein, human MeSH Prohlížeč
- transkripční faktor ATF4 * MeSH