Nejvíce citovaný článek - PubMed ID 15479734
Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5' UTRs that are implicated in homeostatic adaptation to stress and cancer.
- Klíčová slova
- MAPK pathway, eIF3, genetics, genomics, human, ribosomal proteins, ribosome, translation, translational control,
- MeSH
- eukaryotický iniciační faktor 3 * metabolismus genetika MeSH
- HeLa buňky MeSH
- lidé MeSH
- MAP kinasový signální systém * MeSH
- proteosyntéza MeSH
- protoonkogen Mas * MeSH
- ribozomální proteiny * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 * MeSH
- MAS1 protein, human MeSH Prohlížeč
- protoonkogen Mas * MeSH
- ribozomální proteiny * MeSH
Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response, leading cells toward adaptation or death. ATF4's induction under stress was thought to be due to delayed translation reinitiation, where the reinitiation-permissive upstream open reading frame 1 (uORF1) plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrated that the canonical ATF4 translation start site is substantially leaky scanned. Thus, ATF4's translational control is more complex than originally described, underpinning its key role in diverse biological processes.
- Klíčová slova
- ATF4, CP: Molecular biology, integrated stress response, ribosome, ribosome queuing, translation reinitiation, translational control, unfolded protein response,
- MeSH
- fyziologický stres MeSH
- HEK293 buňky MeSH
- lidé MeSH
- otevřené čtecí rámce * genetika MeSH
- proteosyntéza * MeSH
- ribozomy * metabolismus MeSH
- sekvence nukleotidů MeSH
- transkripční faktor ATF4 * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ATF4 protein, human MeSH Prohlížeč
- transkripční faktor ATF4 * MeSH
Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5'TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5' UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.
- Klíčová slova
- ATF4, GCN4, Ribo-seq, TCP-seq, UTR, co-translational assembly, eIF2, eIF3, gene expression, mRNA, ribosome, ribosome profiling, translational control,
- MeSH
- 5' nepřekládaná oblast MeSH
- eukaryotický iniciační faktor 2 genetika metabolismus MeSH
- eukaryotický iniciační faktor 3 genetika metabolismus MeSH
- HEK293 buňky MeSH
- iniciační faktory genetika metabolismus MeSH
- kodon iniciační MeSH
- lidé MeSH
- malé podjednotky ribozomu eukaryotické genetika metabolismus MeSH
- multiproteinové komplexy genetika metabolismus MeSH
- proteosyntéza * MeSH
- ribozomy genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika MeSH
- transkripční faktor ATF4 genetika metabolismus MeSH
- transkripční faktory bZIP genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 5' nepřekládaná oblast MeSH
- ATF4 protein, human MeSH Prohlížeč
- eukaryotický iniciační faktor 2 MeSH
- eukaryotický iniciační faktor 3 MeSH
- GCN4 protein, S cerevisiae MeSH Prohlížeč
- iniciační faktory MeSH
- kodon iniciační MeSH
- multiproteinové komplexy MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- transkripční faktor ATF4 MeSH
- transkripční faktory bZIP MeSH
Protein production must be strictly controlled at its beginning and end to synthesize a polypeptide that faithfully copies genetic information carried in the encoding mRNA. In contrast to viruses and prokaryotes, the majority of mRNAs in eukaryotes contain only one coding sequence, resulting in production of a single protein. There are, however, many exceptional mRNAs that either carry short open reading frames upstream of the main coding sequence (uORFs) or even contain multiple long ORFs. A wide variety of mechanisms have evolved in microbes and higher eukaryotes to prevent recycling of some or all translational components upon termination of the first translated ORF in such mRNAs and thereby enable subsequent translation of the next uORF or downstream coding sequence. These specialized reinitiation mechanisms are often regulated to couple translation of the downstream ORF to various stimuli. Here we review all known instances of both short uORF-mediated and long ORF-mediated reinitiation and present our current understanding of the underlying molecular mechanisms of these intriguing modes of translational control.
- MeSH
- Bacteria genetika metabolismus MeSH
- Eukaryota genetika MeSH
- lidé MeSH
- otevřené čtecí rámce genetika MeSH
- proteosyntéza genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Intramural MeSH
Reinitiation after translation of short upstream ORFs (uORFs) represents one of the means of regulation of gene expression on the mRNA-specific level in response to changing environmental conditions. Over the years it has been shown-mainly in budding yeast-that its efficiency depends on cis-acting features occurring in sequences flanking reinitiation-permissive uORFs, the nature of their coding sequences, as well as protein factors acting in trans. We earlier demonstrated that the first two uORFs from the reinitiation-regulated yeast GCN4 mRNA leader carry specific structural elements in their 5' sequences that interact with the translation initiation factor eIF3 to prevent full ribosomal recycling post their translation. Actually, this interaction turned out to be instrumental in stabilizing the mRNA·40S post-termination complex, which is thus capable to eventually resume scanning and reinitiate on the next AUG start site downstream. Recently, we also provided important in vivo evidence strongly supporting the long-standing idea that to stimulate reinitiation, eIF3 has to remain bound to ribosomes elongating these uORFs until their stop codon has been reached. Here we examined the importance of eIF3 and sequences flanking uORF1 of the human functional homolog of yeast GCN4, ATF4, in stimulation of efficient reinitiation. We revealed that the molecular basis of the reinitiation mechanism is conserved between yeasts and humans.
- Klíčová slova
- ATF4, GCN4, eIF3, mRNA, reinitiation, ribosome, translational control,
- MeSH
- eukaryotický iniciační faktor 3 chemie metabolismus MeSH
- iniciace translace peptidového řetězce * MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- otevřené čtecí rámce * MeSH
- proteosyntéza MeSH
- ribozomy metabolismus MeSH
- savci MeSH
- transkripční faktor ATF4 chemie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 MeSH
- messenger RNA MeSH
- transkripční faktor ATF4 MeSH
Protein synthesis is mediated via numerous molecules including the ribosome, mRNA, tRNAs, as well as translation initiation, elongation and release factors. Some of these factors play several roles throughout the entire process to ensure proper assembly of the preinitiation complex on the right mRNA, accurate selection of the initiation codon, errorless production of the encoded polypeptide and its proper termination. Perhaps, the most intriguing of these multitasking factors is the eukaryotic initiation factor eIF3. Recent evidence strongly suggests that this factor, which coordinates the progress of most of the initiation steps, does not come off the initiation complex upon subunit joining, but instead it remains bound to 80S ribosomes and gradually falls off during the first few elongation cycles to: (1) promote resumption of scanning on the same mRNA molecule for reinitiation downstream-in case of translation of upstream ORFs short enough to preserve eIF3 bound; or (2) come back during termination on long ORFs to fine tune its fidelity or, if signaled, promote programmed stop codon readthrough. Here, we unite recent structural views of the eIF3-40S complex and discus all known eIF3 roles to provide a broad picture of the eIF3's impact on translational control in eukaryotic cells.
- MeSH
- eukaryotický iniciační faktor 3 chemie genetika metabolismus MeSH
- konformace proteinů * MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- molekulární modely MeSH
- podjednotky proteinů chemie genetika metabolismus MeSH
- proteosyntéza * MeSH
- ribozomy genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- eukaryotický iniciační faktor 3 MeSH
- messenger RNA MeSH
- podjednotky proteinů MeSH
- Saccharomyces cerevisiae - proteiny MeSH
We have analyzed the molecular mechanisms of photoinduced cell death using porphyrins with similar structure differing only in the position of the ethylene glycol (EG) chain on the phenyl ring. Meta- and para-positioned EG chains targeted porphyrins to different subcellular compartments. After photoactivation, both types of derivatives induced death of tumor cells via reactive oxygen species (ROS). Para derivatives pTPP(EG)4 and pTPPF(EG)4 primarily accumulated in lysosomes activated the p38 MAP kinase cascade, which in turn induced the mitochondrial apoptotic pathway. In contrast, meta porphyrin derivative mTPP(EG)4 localized in the endoplasmic reticulum (ER) induced dramatic changes in Ca(2+) homeostasis manifested by Ca(2+) rise in the cytoplasm, activation of calpains and stress caspase-12 or caspase-4. ER stress developed into unfolded protein response. Immediately after irradiation the PERK pathway was activated through phosphorylation of PERK, eIF2α and induction of transcription factors ATF4 and CHOP, which regulate stress response genes. PERK knockdown and PERK deficiency protected cells against mTPP(EG)4-mediated apoptosis, confirming the causative role of the PERK pathway.
- MeSH
- apoptóza účinky léků účinky záření MeSH
- ethylenglykol chemie MeSH
- fotochemoterapie * MeSH
- genový knockdown MeSH
- homeostáza účinky léků účinky záření MeSH
- iniciační kaspasy metabolismus MeSH
- kaspasa 2 metabolismus MeSH
- kinasa eIF-2 nedostatek genetika metabolismus MeSH
- lidé MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- nádorové buněčné linie MeSH
- porfyriny chemie farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce účinky léků účinky záření MeSH
- stres endoplazmatického retikula účinky léků účinky záření MeSH
- subcelulární frakce účinky léků metabolismus účinky záření MeSH
- vápník metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CASP4 protein, human MeSH Prohlížeč
- ethylenglykol MeSH
- iniciační kaspasy MeSH
- kaspasa 2 MeSH
- kinasa eIF-2 MeSH
- mitogenem aktivované proteinkinasy p38 MeSH
- PERK kinase MeSH Prohlížeč
- porfyriny MeSH
- reaktivní formy kyslíku MeSH
- vápník MeSH