Nejvíce citovaný článek - PubMed ID 25719440
Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.
- Klíčová slova
- RNA decay, cell biology, cell line, genetics, genomics, human, mouse, stress response,
- MeSH
- adaptorové proteiny signální transdukční metabolismus genetika MeSH
- DNA-helikasy metabolismus genetika MeSH
- exoribonukleasy * metabolismus genetika MeSH
- fyziologický stres * genetika MeSH
- lidé MeSH
- proteiny asociované s mikrotubuly MeSH
- proteiny vázající poly-ADP-ribosu * metabolismus genetika MeSH
- proteiny vázající RNA MeSH
- ribozomy metabolismus MeSH
- RNA-helikasy metabolismus genetika MeSH
- RRM proteiny * metabolismus genetika MeSH
- sekvenční analýza RNA * MeSH
- stabilita RNA * genetika MeSH
- stresová tělíska metabolismus genetika MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- DNA-helikasy MeSH
- exoribonukleasy * MeSH
- G3BP1 protein, human MeSH Prohlížeč
- G3BP2 protein, human MeSH Prohlížeč
- proteiny asociované s mikrotubuly MeSH
- proteiny vázající poly-ADP-ribosu * MeSH
- proteiny vázající RNA MeSH
- RNA-helikasy MeSH
- RRM proteiny * MeSH
- XRN1 protein, human MeSH Prohlížeč
Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adaptor ligation, to comprehensively interrogate the human transcriptome at single-molecule and nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key determinant of RNA metabolism upon cellular stress and dependent on stress-granule formation.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Activating transcription factor 4 (ATF4) is a master transcriptional regulator of the integrated stress response, leading cells toward adaptation or death. ATF4's induction under stress was thought to be due to delayed translation reinitiation, where the reinitiation-permissive upstream open reading frame 1 (uORF1) plays a key role. Accumulating evidence challenging this mechanism as the sole source of ATF4 translation control prompted us to investigate additional regulatory routes. We identified a highly conserved stem-loop in the uORF2/ATF4 overlap, immediately preceded by a near-cognate CUG, which introduces another layer of regulation in the form of ribosome queuing. These elements explain how the inhibitory uORF2 can be translated under stress, confirming prior observations but contradicting the original regulatory model. We also identified two highly conserved, potentially modified adenines performing antagonistic roles. Finally, we demonstrated that the canonical ATF4 translation start site is substantially leaky scanned. Thus, ATF4's translational control is more complex than originally described, underpinning its key role in diverse biological processes.
- Klíčová slova
- ATF4, CP: Molecular biology, integrated stress response, ribosome, ribosome queuing, translation reinitiation, translational control, unfolded protein response,
- MeSH
- fyziologický stres MeSH
- HEK293 buňky MeSH
- lidé MeSH
- otevřené čtecí rámce * genetika MeSH
- proteosyntéza * MeSH
- ribozomy * metabolismus MeSH
- sekvence nukleotidů MeSH
- transkripční faktor ATF4 * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ATF4 protein, human MeSH Prohlížeč
- transkripční faktor ATF4 * MeSH
Translational stalling events that result in ribosome collisions induce Ribosome-associated Quality Control (RQC) in order to degrade potentially toxic truncated nascent proteins. For RQC induction, the collided ribosomes are first marked by the Hel2/ZNF598 E3 ubiquitin ligase to recruit the RQT complex for subunit dissociation. In yeast, uS10 is polyubiquitinated by Hel2, whereas eS10 is preferentially monoubiquitinated by ZNF598 in human cells for an unknown reason. Here, we characterize the ubiquitination activity of ZNF598 and its importance for human RQT-mediated subunit dissociation using the endogenous XBP1u and poly(A) translation stallers. Cryo-EM analysis of a human collided disome reveals a distinct composite interface, with substantial differences to yeast collided disomes. Biochemical analysis of collided ribosomes shows that ZNF598 forms K63-linked polyubiquitin chains on uS10, which are decisive for mammalian RQC initiation. The human RQT (hRQT) complex composed only of ASCC3, ASCC2 and TRIP4 dissociates collided ribosomes dependent on the ATPase activity of ASCC3 and the ubiquitin-binding capacity of ASCC2. The hRQT-mediated subunit dissociation requires the K63-linked polyubiquitination of uS10, while monoubiquitination of eS10 or uS10 is not sufficient. Therefore, we conclude that ZNF598 functionally marks collided mammalian ribosomes by K63-linked polyubiquitination of uS10 for the trimeric hRQT complex-mediated subunit dissociation.
- MeSH
- DNA-helikasy metabolismus MeSH
- lidé MeSH
- proteosyntéza MeSH
- ribozomy metabolismus MeSH
- Saccharomyces cerevisiae - proteiny * genetika metabolismus MeSH
- Saccharomyces cerevisiae * genetika metabolismus MeSH
- transkripční faktory metabolismus MeSH
- transportní proteiny * metabolismus MeSH
- ubikvitinace MeSH
- ubikvitinligasy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ASCC3 protein, human MeSH Prohlížeč
- DNA-helikasy MeSH
- Hel2 protein, S cerevisiae MeSH Prohlížeč
- Saccharomyces cerevisiae - proteiny * MeSH
- transkripční faktory MeSH
- transportní proteiny * MeSH
- TRIP4 protein, human MeSH Prohlížeč
- ubikvitinligasy MeSH
- ZNF598 protein, human MeSH Prohlížeč
Protein production must be strictly controlled at its beginning and end to synthesize a polypeptide that faithfully copies genetic information carried in the encoding mRNA. In contrast to viruses and prokaryotes, the majority of mRNAs in eukaryotes contain only one coding sequence, resulting in production of a single protein. There are, however, many exceptional mRNAs that either carry short open reading frames upstream of the main coding sequence (uORFs) or even contain multiple long ORFs. A wide variety of mechanisms have evolved in microbes and higher eukaryotes to prevent recycling of some or all translational components upon termination of the first translated ORF in such mRNAs and thereby enable subsequent translation of the next uORF or downstream coding sequence. These specialized reinitiation mechanisms are often regulated to couple translation of the downstream ORF to various stimuli. Here we review all known instances of both short uORF-mediated and long ORF-mediated reinitiation and present our current understanding of the underlying molecular mechanisms of these intriguing modes of translational control.
- MeSH
- Bacteria genetika metabolismus MeSH
- Eukaryota genetika MeSH
- lidé MeSH
- otevřené čtecí rámce genetika MeSH
- proteosyntéza genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Intramural MeSH