Nejvíce citovaný článek - PubMed ID 36114276
Genic distribution modelling predicts adaptation of the bank vole to climate change
Rodents constitute a significant proportion of mammalian diversity, with their adaptability and wide distribution making them indispensable study organisms across various biological disciplines. While the laboratory mouse remains a predominant model rodent, the bank vole (Clethrionomys glareolus) offers a unique perspective as a wild rodent within the large subfamily Arvicolinae. Recognized for its relevance to studynatural ecology, the bank vole provides insights into complex ecological interactions, evolutionary adaptations, and disease dynamics. Despite recent recognition of its importance in specific research areas, there is a lack of a comprehensive and up-to-date exploration of its role as a model organism. This review addresses this gap by offering a holistic examination of the bank vole's applications in ecology, evolution, biogeography, disease dynamics, and host-pathogen interactions. We emphasize novel insights into genetic variation, adaptation to climate change, population dynamics, experimental evolution, host-parasite co-evolution, and disease dynamics studies. By consolidating diverse research findings, this review provides a unique and comprehensive perspective on the bank vole's contributions to understanding ecology and evolution, underscoring its importance as a model organism in shaping future biological research.
- Klíčová slova
- Myodes glareolus, Bank vole, Ecology, Genetics, Model organism, Parasitology, Rodents,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Genetic admixture introduces new variants at relatively high frequencies, potentially aiding rapid responses to environmental changes. Here, we evaluate its role in adaptive variation related to climatic conditions in bank voles (Clethrionomys glareolus) in Britain, using whole-genome data. Our results reveal loci showing excess ancestry from one of the two postglacial colonist populations inconsistent with overall admixture patterns. Notably, loci associated with climate adaptation exhibit disproportionate amounts of excess ancestry, highlighting the impact of admixture between colonist populations on local adaptation. The results suggest strong and localized selection on climate-adaptive loci, as indicated by steep clines and/or shifted cline centres, during population replacement. A subset, including a haemoglobin gene, is associated with oxidative stress responses, underscoring a role of oxidative stress in local adaptation. Our study highlights the important contribution of admixture during secondary contact between populations from distinct climatic refugia enriching adaptive diversity. Understanding these dynamics is crucial for predicting future adaptive capacity to anthropogenic climate change.
- MeSH
- aklimatizace genetika MeSH
- Arvicolinae * genetika fyziologie MeSH
- fyziologická adaptace genetika MeSH
- genetická variace MeSH
- jednonukleotidový polymorfismus MeSH
- klimatické změny * MeSH
- podnebí MeSH
- populační genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené království MeSH
As climate change continues, species pushed outside their physiological tolerance limits must adapt or face extinction. When change is rapid, adaptation will largely harness ancestral variation, making the availability and characteristics of that variation of critical importance. Here, we used whole-genome sequencing and genetic-environment association analyses to identify adaptive variation and its significance in the context of future climates in a small Palearctic mammal, the bank vole (Clethrionomys glareolus). We found that peripheral populations of bank vole in Britain are already at the extreme bounds of potential genetic adaptation and may require an influx of adaptive variation in order to respond. Analyses of adaptive loci suggest regional differences in climate variables select for variants that influence patterns of population adaptive resilience, including genes associated with antioxidant defense, and support a pattern of thermal/hypoxic cross-adaptation. Our findings indicate that understanding potential shifts in genomic composition in response to climate change may be key to predicting species' fate under future climates.
- MeSH
- Arvicolinae genetika MeSH
- fyziologická adaptace genetika MeSH
- genom MeSH
- hlodavci * genetika MeSH
- klimatické změny MeSH
- savci * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH