Nejvíce citovaný článek - PubMed ID 36140169
Beneficial Effects of Empagliflozin Are Mediated by Reduced Renal Inflammation and Oxidative Stress in Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein
A new class of antidiabetic drugs - gliflozins (inhibitors of sodium glucose cotransporter-2; SGLT-2i) stimulate glucose and sodium excretion, thereby contributing to improved glycemic control, weight loss and blood pressure reduction in diabetic patients. Large clinical trials in patients with type 2 diabetes treated with empagliflozin, canagliflozin or dapagliflozin have demonstrated their excellent efficacy in improving many cardiovascular outcomes, including the reduction of death from cardiovascular diseases, non-fatal myocardial infarction or stroke, and hospitalization for heart failure. Moreover, the beneficial effects of SGLT-2i were also demonstrated in the decrease in proteinuria, which leads to a lower risk of progression to end-stage renal disease and thus a delay in initiation of the renal replacement therapy. Unexpectedly, their cardioprotective and renoprotective effects have been demonstrated not only in patients with diabetes but also in those without diabetes. Recently, much effort has been focused on patients with heart failure (either with reduced or preserved ejection fraction) or liver disease. Experimental studies have highlighted pleiotropic effects of SGLT-2 inhibitors beyond their natriuretic and glycosuric effects, including reduction of fibrosis, inflammation, reactive oxygen species, and others. Our results in experimental non-diabetic models of hypertension, chronic kidney disease and heart failure are partially consistent with these findings. This raises the question of whether the same mechanisms are at work in diabetic and non-diabetic conditions, and which mechanisms are responsible for the beneficial effects of gliflozins under non-diabetic conditions. Are these effects cardio-renal, metabolic, or others? This review will focus on the effects of gliflozins under different pathophysiological conditions, namely in hypertension, chronic kidney disease, and heart failure, which have been evaluated in non-diabetic rat models of these diseases. Key words: SGLT-2 inhibitor, hypertension, chronic kidney disease, heart failure, liver disease, rat.
- Klíčová slova
- SGLT-2 inhibitor, Hypertension, Chronic kidney disease, Heart failure, Liver disease, Rat,
- MeSH
- glifloziny * terapeutické užití farmakologie MeSH
- hypoglykemika terapeutické užití farmakologie MeSH
- kardiovaskulární nemoci * farmakoterapie prevence a kontrola MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- glifloziny * MeSH
- hypoglykemika MeSH
Gliflozins (sodium-glucose transporter-2 inhibitors) exhibited renoprotective effects not only in diabetic but also in non-diabetic patients with chronic kidney disease (CKD). Controversial results were reported in experimental non-diabetic models of CKD. Therefore, we examined empagliflozin effects in three CKD models, namely, in fawn-hooded hypertensive (FHH) rats, uninephrectomized salt-loaded (UNX + HS) rats, and in rats with Goldblatt hypertension (two-kidney, one-clip 2K1C) that were either untreated or treated with empagliflozin (10 mg/kg/day) for eight weeks. Plethysmography blood pressure (BP) was recorded weekly, and renal parameters (proteinuria, plasma urea, creatinine clearance, and sodium excretion) were analyzed three times during the experiment. At the end of the study, blood pressure was also measured directly. Markers of oxidative stress (TBARS) and inflammation (MCP-1) were analyzed in kidney and plasma, respectively. Body weight and visceral adiposity were reduced by empagliflozin in FHH rats, without a significant effect on BP. Experimentally induced CKD (UNX + HS and 2K1C) was associated with a substantial increase in BP and relative heart and kidney weights. Empagliflozin influenced neither visceral adiposity nor BP in these two models. Although empagliflozin increased sodium excretion, suggesting effective SGLT-2 inhibition, it did not affect diuresis in any experimental model. Unexpectedly, empagliflozin did not provide renoprotection because proteinuria, plasma urea, and plasma creatinine were not lowered by empagliflozin treatment in all three CKD models. In line with these results, empagliflozin treatment did not decrease TBARS or MCP-1 levels in either model. In conclusion, empagliflozin did not provide the expected beneficial effects on kidney function in experimental models of CKD.
- Klíčová slova
- SGLT-2 inhibition, fawn-hooded hypertensive rat, one-clip hypertension, proteinuria, two-kidney, uninephrectomized salt-loaded,
- Publikační typ
- časopisecké články MeSH