Nejvíce citovaný článek - PubMed ID 36143419
Rose Bengal-Modified Upconverting Nanoparticles: Synthesis, Characterization, and Biological Evaluation
Pancreatic cancer is one of the most common forms of malignant disease with a poor survival prognosis. Currently, nanomedicine holds great promise for targeted diagnosis and treatment of this cancer, which also reduces toxic side effects. In this work, we prepared PEG-coated monodisperse upconversion nanoparticles (UCNPs) with a conjugated Flamma® fluorescent dye for imaging and detection of particle distribution in vivo. We performed a thorough physicochemical characterization of the particles and determined their colloidal and chemical stability in several aqueous media such as water, PBS, Dulbecco's modified Eagle's medium and artificial lysosomal fluid. Luminescence resonance energy transfer from the emission of UCNPs as a donor to the Flamma® as an acceptor was confirmed. Intraperitoneal versus intravenous administration was then compared in terms of biodistribution of particles in various organs in the orthotopic mice pancreatic cancer model. The intraperitoneal route was preferred over the intravenous one, because it significantly increased the accumulation of particles in the tumor tissue. These new UCNP@Ale-PEG-Flamma® nanoparticles are thus promising for new treatment avenues for pancreatic cancer.
- Publikační typ
- časopisecké články MeSH
Upconverting nanoparticles are interesting materials that have the potential for use in many applications ranging from solar energy harvesting to biosensing, light-triggered drug delivery, and photodynamic therapy (PDT). One of the main requirements for the particles is their surface modification, in our case using poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) and temoporfin (THPC) photosensitizer to ensure the colloidal and chemical stability of the particles in aqueous media and the formation of singlet oxygen after NIR irradiation, respectively. Codoping of Fe2+, Yb3+, and Er3+ ions in the NaYF4 host induced upconversion emission of particles in the red region, which is dominant for achieving direct excitation of THPC. Novel monodisperse PMVEMA-coated upconversion NaYF4:Yb3+,Er3+,Fe2+ nanoparticles (UCNPs) with chemically bonded THPC were found to efficiently transfer energy and generate singlet oxygen. The cytotoxicity of the UCNPs was determined in the human pancreatic adenocarcinoma cell lines Capan-2, PANC-01, and PA-TU-8902. In vitro data demonstrated enhanced uptake of UCNP@PMVEMA-THPC particles by rat INS-1E insulinoma cells, followed by significant cell destruction after excitation with a 980 nm laser. Intratumoral administration of these nanoconjugates into a mouse model of human pancreatic adenocarcinoma caused extensive necrosis at the tumor site, followed by tumor suppression after NIR-induced PDT. In vitro and in vivo results thus suggest that this nanoconjugate is a promising candidate for NIR-induced PDT of cancer.
- Klíčová slova
- pancreatic tumor, photodynamic therapy, temoporfin, upconversion,
- Publikační typ
- časopisecké články MeSH
In this report, we synthesized hexagonal NaYF4:Yb,Er upconverting nanoparticles (UCNPs) of 171 nm in size with a narrow particle size distribution. To address their colloidal stabi-lity in aqueous media and to incorporate a photosensitizer that can produce reactive singlet oxygen (1O2) to kill tumor cells, UCNPs were conjugated with 6-bromohexanoic acid-functionalized Rose Bengal (RB) and coated with PEG-alendronate (PEG-Ale). The particles were thoroughly characterized by transmission electron microscopy, dynamic light scattering, ATR FTIR, X-ray photoelectron spectroscopy, thermogravimetric analysis, and spectrofluorometry, and 1O2 formation was detected using a 9,10-diphenylanthracene spectrophotometric probe. Cytotoxicity determination on rat mesenchymal stem cells by using the MTT assay showed that neutralization of the large positive surface charge of neat UCNPs with PEG-Ale and the bound RB sensitizer significantly reduced the concentration-dependent cytotoxicity. The presented strategy shows great potential for the use of these particles as a novel agent for the photodynamic therapy of tumors.
- Klíčová slova
- cytotoxicity, nanoparticles, photosensitizer, rose bengal, upcoverting,
- Publikační typ
- časopisecké články MeSH