Nejvíce citovaný článek - PubMed ID 36153823
Pharmacokinetics of Intramuscularly Administered Thermoresponsive Polymers
Gelatin-based photo-crosslinkable hydrogels are promising scaffold materials to serve regenerative medicine. They are widely applicable in additive manufacturing, which allows for the production of various scaffold microarchitectures in line with the anatomical requirements of the organ to be replaced or tissue defect to be treated. Upon their in vivo utilization, the main bottleneck is to monitor cell colonization along with their degradation (rate). In order to enable non-invasive visualization, labeling with MRI-active components like N-(2,2-difluoroethyl)acrylamide (DFEA) provides a promising approach. Herein, we report on the development of a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink in combination with DFEA, applicable in digital light processing-based additive manufacturing towards bone tissue regeneration. The fabricated hydrogel constructs show excellent shape fidelity in line with the printing resolution, as DFEA acts as a small molecular crosslinker in the system. The constructs exhibit high stiffness (E = 36.9 ± 4.1 kPa, evaluated via oscillatory rheology), suitable to serve bone regeneration and excellent MRI visualization capacity. Moreover, in combination with adipose tissue-derived stem cells (ASCs), the 3D-printed constructs show biocompatibility, and upon 4 weeks of culture, the ASCs express the osteogenic differentiation marker Ca2+.
Pulmonary hypertension is a cardiovascular disease with a low survival rate. The protein galectin-3 (Gal-3) binding β-galactosides of cellular glycoproteins plays an important role in the onset and development of this disease. Carbohydrate-based drugs that target Gal-3 represent a new therapeutic strategy in the treatment of pulmonary hypertension. Here, we present the synthesis of novel hydrophilic glycopolymer inhibitors of Gal-3 based on a polyoxazoline chain decorated with carbohydrate ligands. Biolayer interferometry revealed a high binding affinity of these glycopolymers to Gal-3 in the subnanomolar range. In the cell cultures of cardiac fibroblasts and pulmonary artery smooth muscle cells, the most potent glycopolymer 18 (Lac-high) caused a decrease in the expression of markers of tissue remodeling in pulmonary hypertension. The glycopolymers were shown to penetrate into the cells. In a biodistribution and pharmacokinetics study in rats, the glycopolymers accumulated in heart and lung tissues, which are most affected by pulmonary hypertension.
- MeSH
- arteria pulmonalis účinky léků metabolismus MeSH
- biologické markery MeSH
- fibroblasty účinky léků metabolismus MeSH
- galektin 3 * antagonisté a inhibitory metabolismus MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- plicní hypertenze * farmakoterapie metabolismus MeSH
- polymery chemie farmakologie MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- galektin 3 * MeSH
- polymery MeSH