Nejvíce citovaný článek - PubMed ID 36526668
Mucus-derived exosome-like vesicles from the Spanish slug (Arion vulgaris): taking advantage of invasive pest species in biotechnology
In recent years, there has been a growing interest in plant extracellular vesicles (pEVs) due to their immense potential for medical applications, particularly as carriers for drug delivery. To use the benefits of pEVs in the future, it is necessary to identify methods that facilitate their production in sufficient quantities while maintaining high quality. In this study, a comparative analysis of yields of tobacco pEV derived from apoplastic fluid, sterile calli, and suspension cultures, was performed to identify the most suitable plant material for vesicle isolation. Subsequent experiments focused on assessing the efficiency of small interfering RNA (siRNA) loading into callus-derived vesicles, employing various methods such as sonication, incubation, incubation supplemented with saponin, lipofection, and electroporation. Differences in loading efficiency among vesicles derived from apoplastic fluid, calli, and suspension cultures were observed. Moreover, our investigation extended to the presence of tobacco secondary metabolites, specifically anabasine and nicotine, within vesicles originating from three distinct tobacco sources. The outcomes of our study highlight variations not only in vesicle yields based on their source but also in their loadability and the presence of nicotine and anabasine. These findings contribute valuable insights into optimizing the production and application of pEVs for future medicinal purposes.
- MeSH
- buněčné kultury metody MeSH
- extracelulární vezikuly * metabolismus MeSH
- malá interferující RNA metabolismus genetika MeSH
- nikotin MeSH
- tabák * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- malá interferující RNA MeSH
- nikotin MeSH
PIWI-interacting RNAs (piRNAs) play a crucial role in safeguarding genome integrity by silencing mobile genetic elements. From flies to humans, piRNAs originate from long single-stranded precursors encoded by genomic piRNA clusters. How piRNA clusters form to adapt to genomic invaders and evolve to maintain protection remain key outstanding questions. Here, we generate a roadmap of piRNA clusters across seven species that highlights both similarities and variations. In mammals, we identify transcriptional readthrough as a mechanism to generate piRNAs from transposon insertions (piCs) downstream of genes (DoG). Together with the well-known stress-dependent DoG transcripts, our findings suggest a molecular mechanism for the formation of piRNA clusters in response to retroviral invasion. Finally, we identify a class of dynamic piRNA clusters in humans, underscoring unique features of human germ cell biology. Our results advance the understanding of conserved principles and species-specific variations in piRNA biology and provide tools for future studies.
- Klíčová slova
- CP: Molecular biology, PIWI, evolution, fertility, germ cell, mobile genetic element, piRNA, readthrough transcription, spermatogenesis, stress, transposon,
- MeSH
- druhová specificita MeSH
- lidé MeSH
- malá interferující RNA * metabolismus genetika MeSH
- myši MeSH
- Piwi-interagující RNA MeSH
- psi MeSH
- savci * genetika MeSH
- transpozibilní elementy DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- srovnávací studie MeSH
- Názvy látek
- malá interferující RNA * MeSH
- Piwi-interagující RNA MeSH
- transpozibilní elementy DNA MeSH
Terrestrial gastropod mucus exhibits multifunctional attributes, enabling diverse applications. This comprehensive review integrates insights across biomedicine, biotechnology, and intellectual property to elucidate the bioactivities, physicochemical properties, and ecological roles of snail and slug mucus. Following an overview of mucus functional roles in gastropods, promising applications are highlighted in wound healing, antimicrobials, biomaterials, and cosmetics, alongside key challenges. An analysis of global patent trends reveals surging innovation efforts to leverage gastropod mucus. Strategic priorities include bioprospecting natural diversity, optimizing stabilization systems, recombinant biosynthesis, and fostering collaboration to translate promising potentials sustainably into impactful technologies. Ultimately, harnessing the remarkable multifunctionality of gastropod mucus holds immense opportunities for transformative innovations in biomedicine, biotechnology, and beyond.
- Klíčová slova
- biomaterial, biomedicine, biotechnology, gastropod mucus, slug, snail,
- MeSH
- antiinfekční látky terapeutické užití farmakologie MeSH
- biokompatibilní materiály chemie MeSH
- hlen * metabolismus MeSH
- hojení ran účinky léků MeSH
- kosmetické přípravky MeSH
- lidé MeSH
- plži * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antiinfekční látky MeSH
- biokompatibilní materiály MeSH
- kosmetické přípravky MeSH
Extracellular vesicles (EVs) are lipid-enclosed structures that facilitate intercellular communication by transferring cargo between cells. Although predominantly studied in mammals, extracellular vesicles are ubiquitous across metazoans, and thus research in non-mammalian models is critical for fully elucidating extracellular vesicles biology. Recent advances demonstrate that extracellular vesicles mediate diverse physiological processes in non-mammalian vertebrates, including fish, amphibians, and reptiles. Piscine extracellular vesicles promote fin regeneration in zebrafish and carry heat shock proteins regulated by stress. Frog extracellular vesicles containing microRNAs modulate angiogenesis, while turtle extracellular vesicles coordinate reproductive functions. Venom from snakes contains extracellular vesicles that mirror the whole venom composition and interact with mammalian cells. Invertebrates also possess extracellular vesicles involved in immunity, development, and pathogenesis. Molluscan extracellular vesicles participate in shell formation and host interactions. Arthropod models, including Drosophila, genetically dissect conserved pathways controlling extracellular vesicles biogenesis and signalling. Nematode extracellular vesicles regulate larval development, animal communication, and ageing via conserved extracellular vesicles proteins. Ancient metazoan lineages utilise extracellular vesicles as well, with cnidarian extracellular vesicles regulating immunity and regeneration. Ultimately, expanding extracellular vesicles research beyond typical biomedical models to encompass phylogenetic diversity provides an unparalleled perspective on the conserved versus specialised aspects of metazoan extracellular vesicles roles over ∼500 million years. With a primary focus on the literature from the past 5 years, this review aims to reveal fundamental insights into EV-mediated intercellular communication mechanisms shaping animal physiology.
- Klíčová slova
- cargo, development, exosomes, extracellular vesicles, non-mammalian animal models, regeneration, signalling,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH