Nejvíce citovaný článek - PubMed ID 36675241
Salicylanilides and Their Anticancer Properties
BACKGROUND AND PURPOSE: New compounds and innovative therapeutic approaches are trying to prevent antimicrobial resistance, which has become a global health challenge. EXPERIMENTAL APPROACH: This study includes a series of twelve mono-, di- and trichlorinated 1-hydroxynaphthalene-2-carboxanilides designed as multitarget agents. All compounds were evaluated for their antistaphylococcal activity. Furthermore, MTT assay and chemoproteomic analysis of selected compounds were performed. Cytotoxicity in human cells was also tested. KEY RESULTS: N-(3,5-Dichlorophenyl)-1-hydroxynaphthalene-2-carboxamide (10) demonstrated activity comparable to or higher than clinically used drugs, with minimum inhibitory concentrations (MICs) of 0.37 μM. The compound was equally effective against clinical isolates of methicillin-resistant S. aureus. On the other hand, compound 10 showed 96 % inhibition of S. aureus respiration only at a concentration of 16× MIC. Chemoproteomic analysis revealed that the effect of agent 10 on staphylococci resulted in the downregulation of four proteins. This compound expressed no in vitro cytotoxicity up to a concentration of 30 μM. CONCLUSION: From the set of tested mono-, di- and trisubstituted derivatives, it is evident that the position of chlorine atoms is decisive for significant antistaphylococcal activity. Inhibition of energy metabolism does not appear to be one of the main mechanisms of action of compound 10; on the contrary, the antibacterial effect may likely be contributed by downregulation of proteins (especially ATP-dependent protease ATPase subunit HslU) involved in processes essential for bacterial survival and growth, such as protein, nucleotide/nucleic acid synthesis and efficient protein repair/degradation.
- Klíčová slova
- Lipophilicity, MTT assay, antistaphylococcal activity, chemoproteomic analysis, cytotoxicity,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND PURPOSE: Many new compounds are being prepared to overcome the problem of increasing microbial resistance and the increasing number of infections. EXPERIMENTAL APPROACH: This study includes a series of twenty-seven mono-, di- and trisubstituted 2-hydroxynaphthalene-1-carboxanilides designed as multitarget agents. The compounds are substituted with methoxy, methyl, and nitro groups, as well as additionally with chlorine, bromine, and trifluoromethyl at various positions. All the compounds were evaluated for antibacterial activities against Gram-positive and Gram-negative bacteria and mycobacteria. Cytotoxicity on human cells was also tested. KEY RESULTS: Three compounds showed activity comparable to clinically used drugs. N-(3,5-Dimethylphenyl)-2-hydroxynaphthalene-1-carboxamide (13) showed only antistaphylococcal activity (minimum inhibitory concentration (MIC) = 54.9 μM); 2-hydroxy-N-[2-methyl-5-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (22) and 2-hydroxy-N-[4-nitro-3-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (27) were active across the entire spectrum of tested bacteria/mycobacteria, both against the sensitive set and against resistant isolates (MICs range 0.3 to 92.6 μM). Compound 22 was even active against E. coli (MIC = 23.2 μM). The active agents showed no in vitro cytotoxicity up to a concentration of 30 μM. CONCLUSION: Compounds with trifluoromethyl in the meta-anilide position, experimental lipophilicity expressed as log k (logarithm of the capacity factor) in the range of 0.31 to 0.34 and calculated electron σ parameter for the anilide substituent higher than 0.59 were effective. The investigated compounds meet the definition of Michael acceptors. Based on ADME screening, the investigated compounds 13, 22 and 27 should have suitable physicochemical parameters for good bioavailability in the organism. Therefore, these are promising agents for further study.
- Klíčová slova
- Lipophilicity, antibacterial activity, antimycobacterial activity, cytotoxicity,
- Publikační typ
- časopisecké články MeSH