Most cited article - PubMed ID 36685281
Protein adsorption by nanomechanical mass spectrometry: Beyond the real-time molecular weighting
Neuropsychological tests (NPTs), which are routinely used in clinical practice for assessment of dementia, are also considered to be essential for differential diagnosis of Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD), especially the behavioral variants of frontotemporal dementia (bvFTD) and primary progressive aphasia (PPA) at their initial clinical presentations. However, the heterogeneous features of these diseases, which have many overlapping signs, make differentiation between AD and FTLD highly challenging. Moreover, NPTs were primarily developed in Western countries and for native speakers of non-tonal languages. Hence, there is an ongoing dispute over the validity and reliability of these tests in culturally different and typologically diverse language populations. The purpose of this case series was to examine which of the NPTs adjusted for Taiwanese society may be used to distinguish these two diseases. Since AD and FTLD have different effects on individuals' brain, we combined NPTs with neuroimaging. We found that participants diagnosed with FTLD had lower scores in NPTs assessing language or social cognition than AD participants. PPA participants also had lower measures in the Free and Cued Selective Reminding Test than those diagnosed with bvFTD, while bvFTD participants showed poorer performances in the behavioral measures than PPA participants. In addition, the initial diagnosis was supported by the standard one-year clinical follow-up.
- Keywords
- Alzheimer’s disease, PPA, bvFTD, cognitive impairment, frontotemporal dementia, frontotemporal lobar degeneration, neuroimaging, neuropsychological assessment,
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Nafion possesses many interesting properties such as a high ion-conductivity, hydrophilicity, and thermal and chemical stability that make this material highly suitable for many applications including fuel cells and various (bio-)chemical and physical sensors. However, the mechanical properties of a Nafion membrane that are known to be affected by the viscoplastic characteristics of the material itself have a strong impact on the performance of Nafion-based sensors. In this study, the mechanical properties of Nafion under the cyclic loading have been investigated in detail. After cyclic tensile loading (i.e., maximum elongation about 25% at a room temperature and relative humidity about 40%) a time-dependent recovery comes into play. This recovery process is also shown being strain-rate dependent. Our results reveal that the recovery behavior weakens after performing several stress-strain cycles. Present findings can be of a great importance in future design of various chemical and biological microsensors and nanosensors such as hydrogen or glucose ones.
- Keywords
- Nafion, cyclic loading, mechanical properties, mechanical tests, viscoplastic properties,
- Publication type
- Journal Article MeSH