Most cited article - PubMed ID 36702824
Early evolution of enamel matrix proteins is reflected by pleiotropy of physiological functions
INTRODUCTION: Fibroblast growth factor 20 (Fgf20), a member of the Fgf9 subfamily, was identified as an important regulator of bone differentiation and homeostasis processes. However, the role of Fgf20 in bone physiology has not been approached yet. Here we present a comprehensive bone phenotype analysis of mice with functional ablation of Fgf20. METHODS: The study conducts an extensive analysis of Fgf20 knockout mice compared to controls, incorporating microCT scanning, volumetric analysis, Fgf9 subfamily expression and stimulation experiment and histological evaluation. RESULTS: The bone phenotype could be detected especially in the area of the lumbar and caudal part of the spine and in fingers. Regarding the spine, Fgf20-/- mice exhibited adhesions of the transverse process of the sixth lumbar vertebra to the pelvis as well as malformations in the distal part of their tails. Preaxial polydactyly and polysyndactyly in varying degrees of severity were also detected. High resolution microCT analysis of distal femurs and the fourth lumbar vertebra showed significant differences in structure and mineralization in both cortical and trabecular bone. These findings were histologically validated and may be associated with the expression of Fgf20 in chondrocytes and their progenitors. Moreover, histological sections demonstrated increased bone tissue formation, disruption of Fgf20-/- femur cartilage, and cellular-level alterations, particularly in osteoclasts. We also observed molar dysmorphology, including root taurodontism, and described variations in mineralization and dentin thickness. DISCUSSION: Our analysis provides evidence that Fgf20, together with other members of the Fgf9 subfamily, plays a crucial regulatory role in skeletal development and bone homeostasis.
- Keywords
- Fgf, bone, bone homeostasis, chondrocytes, mineralization, polydactylia,
- MeSH
- Phenotype MeSH
- Fibroblast Growth Factors * metabolism genetics MeSH
- Calcification, Physiologic MeSH
- Bone and Bones metabolism pathology diagnostic imaging abnormalities MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout * MeSH
- Mice MeSH
- Osteogenesis MeSH
- X-Ray Microtomography MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fgf20 protein, mouse MeSH Browser
- Fibroblast Growth Factors * MeSH
Ameloblastin is a protein in biomineralization of tooth enamel. However recent results indicate that this is probably not its only role in an organism. Enamel matrix formation represents a complex process enabled via specific crosslinking of two proteins - the most abundant amelogenin and the ameloblastin (AMBN). The human AMBN (hAMBN) gene possesses 13 protein coding exons with alternatively spliced transcripts and the longest isoform about 447 amino acid residues. It has been described that AMBN molecules in vitro assemble into oligomers via a sequence encoded by exon 5. Enamel is formed by the processing of enamel proteins by two specific proteases - enamelysin (MMP-20) and kallikrein 4 (KLK-4). The scaffold made of AMEL and non-amelogenin proteins is cleaved and removed from the developed tooth enamel. The hAMBN is expressed in two isoforms (ISO I and II), which could lead to their different utilization determined by distinct proteolytic profiles. In this study, we compared proteolytic profiles of both isoforms of hAMBN expressed in E. coli after proteolysis by MMP-20, KLK-4, and their 1:2 mixture. Proteolysis products were analysed and cleavage sites were identified by mass spectrometry. The proteolytic profiles of two AMBN isoforms showed different results, although we have to determine that the analysed AMBN was not post-translationally modified as expressed in prokaryotic cells. These results may lead to the suggestion of potentially divergent roles of AMBN isoforms cleavage products in various cell signalling pathways such as calcium buffering or signalling cascades.
- Keywords
- Ameloblastin, Enzymatic cleavage products, KLK-4, MMP-20, Proteolytic analysis,
- Publication type
- Journal Article MeSH