Most cited article - PubMed ID 3673338
Production of bacteriocin-like agents of Budvicia aquatica and "Pragia fontium"
Fonticins are phage tail-like bacteriocins produced by the Gram-negative bacterium Pragia fontium from the family Budviciaceae. This bacterium produces contractile-type particles that adsorb on the surface of sensitive bacteria and penetrate the cell wall, probably during contraction, in a way similar to the type VI secretion system. We characterized the pore-forming activity of fonticins using both living cells and in vitro model membranes. Using a potassium leakage assay, we show that fonticins are able to permeabilize sensitive cells. On black lipid membranes, single-pore conductance is about 0.78 nS in 1 M NaCl and appears to be linearly dependent on the increasing molar strength of NaCl solution, which is a property of considerably large pores. In agreement with these findings, fonticins are not ion selective for Na+, K+, and Cl-. Polyethylene glycol 3350 (PEG 3350) molecules of about 3.5 nm in diameter can enter the fonticin pore lumen, whereas the larger molecules cannot pass the pore. The size of fonticin pores was confirmed by transmission electron microscopy. The terminal membrane-piercing complex of the fonticin tube probably creates a selective barrier restricting passage of macromolecules. IMPORTANCE Phage tail-like bacteriocins are now the subject of research as potent antibacterial agents due to their narrow host specificity and single-hit mode of action. In this work, we focused on the structure and mode of action of fonticins. According to some theories, related particles were initially adapted for passage of double-stranded DNA (dsDNA) molecules, but fonticins changed their function during the evolution; they are able to form large pores through the bacterial envelope of Gram-negative bacteria. As various pore-forming proteins are extensively used for nanopore sequencing and stochastic sensing, we decided to investigate the pore-forming properties of fonticin protein complexes on artificial lipid membranes. Our research revealed remarkable structural properties of these particles that may have a potential application as a nanodevice.
- Keywords
- black lipid membranes, conductance, electric current, electron microscopy, fonticin, membrane pore formation, phage tail-like bacteriocins, single-pore conductance,
- MeSH
- Bacteriocins * metabolism MeSH
- Cell Membrane metabolism MeSH
- Sodium Chloride metabolism MeSH
- Enterobacteriaceae MeSH
- Gammaproteobacteria MeSH
- Lipid Bilayers * metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacteriocins * MeSH
- Sodium Chloride MeSH
- Lipid Bilayers * MeSH
Striking differences in the production of specific inhibitory agents affecting other strains of the same (or of related) species were found between genera of the family Enterobacteriaceae. We tested 50-163 strains each of the potentially pathogenic genera: Escherichia, Citrobacter, Enterobacter, Kluyvera, and Leclercia for their ability to produce bacteriophages, high-molecular-weight (HMW) and low-molecular-weight (LMW) bacteriocins and siderophores against the same sets of strains, using the cross-test method. The genus Escherichia differs substantially from all other Enterobacteriaceae, harboring a notable proportion of lysogenic (36.6%) and colicinogenic (13.9%) strains. Only 18.2% of the Citrobacter strains are lysogenic and only rarely are they colicinogenic, although in 7.3%, they produce phage tail-like bacteriocins. On the other hand, Kluyvera strains were only in 1.8% lysogenic, no colicinogenic strains were found, but in 7.3%, they produced siderophores causing zones of growth inhibition in agar cultures of strains of the same genus. In Leclercia, 10.0% of the strains were lysogenic, 2.0% produced HMW bacteriocins, no colicinogenic strains were found and 2.0% produced siderophores. Enterobacter has shown 23.1% of strains producing siderophores, whereas merely 7.7% were lysogenic, 1.9% colicinogenic and 3.8% formed phage tail-like bacteriocins. HMW bacteriocins of Enterobacter strains disposed of an unusually wide spectrum of activity. The siderophore activity spectrum was rather wide in any genus, but the siderophores were usually not produced by strains producing phages or colicins.
- MeSH
- Anti-Bacterial Agents biosynthesis MeSH
- Bacteriocins biosynthesis MeSH
- Bacteriophages physiology MeSH
- Enterobacteriaceae classification metabolism virology MeSH
- Incidence MeSH
- Colicins metabolism MeSH
- Culture Media MeSH
- Humans MeSH
- Lysogeny MeSH
- Molecular Weight MeSH
- Siderophores metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Bacteriocins MeSH
- Colicins MeSH
- Culture Media MeSH
- Siderophores MeSH
Electron microscopic analysis of contractile phage tail-like bacteriocins of three Pragia fontium strains and one Budvicia aquatica strain was performed. Fonticin and aquaticin are remarkably heat sensitive but trypsin resistant. Simultaneous production of contractile and flexible phage tail-like bacteriocins in the P. fontium 64613 strain is shown for the first time.
- MeSH
- Bacteriocins analysis MeSH
- Bacteriophages isolation & purification ultrastructure MeSH
- Microscopy, Electron MeSH
- Enterobacteriaceae ultrastructure virology MeSH
- Molecular Weight MeSH
- Sensitivity and Specificity MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacteriocins MeSH
In a cross-test, we examined 55 strains of Citrobacter youngae against each other as potential producers of temperate bacteriophages and as potential sensitive indicators for them. Ten strains (18.2 %) showed the production of phages. Seven different strain-specific spectra of activity (from 1 to 11 strains each) were found. Phage production by 6 strains was inducible with mitomycin C, in 4 strains it was not inducible. The plaques of the phages were more or less turbid, without a lytic halo, tiny to small, 0.2-1.3 mm in diameter. Using a polyclonal, specific anti-lambda serum, all 10 phages were found to be clearly distinct from E. coli lambda phage, the phage 31/47 showing the highest neutralization titre of all. Interspecific tests with 15 strains of 8 species of Enterobacteriaceae revealed not a single case of activity of Citrobacter phages towards any of them. Five phage-immune clones lysogenized with 5 of the phages kept their remaining phage sensitivity spectra, though extended by sensitivity to 1-3 phages; 2 of these strains acquired also sensitivity to phage lambda. The phages belong to the morphotypes of Myoviridae (6 phages) and Siphoviridae (4 phages), with head diameters of 51-58 nm and tail length of 97-173 nm. Three strains produced corpuscular bacteriocins.
- MeSH
- Virus Activation MeSH
- Bacteriophages classification physiology ultrastructure MeSH
- Citrobacter virology MeSH
- Bacteriophage Typing MeSH
- Lysogeny MeSH
- Mitomycin pharmacology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Mitomycin MeSH
Colicins are toxic exoproteins produced by bacteria of colicinogenic strains of Escherichia coli and some related species of Enterobacteriaceae, during the growth of their cultures. They inhibit sensitive bacteria of the same family. About 35% E. coli strains appearing in human intestinal tract are colicinogenic. Synthesis of colicins is coded by genes located on Col plasmids. Until now more than 34 types of colicins have been described, 21 of them in greater detail, viz. colicins A, B, D, E1-E9, Ia, Ib, JS, K, M, N, U, 5, 10. In general, their interaction with sensitive bacteria includes three steps: (1) binding of the colicin molecule to a specific receptor in the bacterial outer membrane; (2) its translocation through the cell envelope; and (3) its lethal interaction with the specific molecular target in the cell. The classification of colicins is based on differences in the molecular events of these three steps.
- MeSH
- Escherichia coli chemistry metabolism MeSH
- Escherichia coli Infections microbiology MeSH
- Colicins classification metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Colicins MeSH