Most cited article - PubMed ID 37309271
Light-Powered Self-Adaptive Mesostructured Microrobots for Simultaneous Microplastics Trapping and Fragmentation via in situ Surface Morphing
Inspired by Richard Feynman's 1959 lecture and the 1966 film Fantastic Voyage, the field of micro/nanorobots has evolved from science fiction to reality, with significant advancements in biomedical and environmental applications. Despite the rapid progress, the deployment of functional micro/nanorobots remains limited. This review of the technology roadmap identifies key challenges hindering their widespread use, focusing on propulsion mechanisms, fundamental theoretical aspects, collective behavior, material design, and embodied intelligence. We explore the current state of micro/nanorobot technology, with an emphasis on applications in biomedicine, environmental remediation, analytical sensing, and other industrial technological aspects. Additionally, we analyze issues related to scaling up production, commercialization, and regulatory frameworks that are crucial for transitioning from research to practical applications. We also emphasize the need for interdisciplinary collaboration to address both technical and nontechnical challenges, such as sustainability, ethics, and business considerations. Finally, we propose a roadmap for future research to accelerate the development of micro/nanorobots, positioning them as essential tools for addressing grand challenges and enhancing the quality of life.
- Keywords
- collective behavior, functionality, intelligence, micro/nanorobots, nanotechnology, propulsion, smart materials, technological translation,
- MeSH
- Humans MeSH
- Nanotechnology * methods MeSH
- Robotics * instrumentation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Fluorescence-based sensing is a straightforward and powerful technique with high sensitivity for the detection of a wide range of chemical and biological analytes. Integrating the high sensing capabilities of fluorescent probes with wireless navigation systems can enable the extension of their operational range, even in challenging scenarios with limited accessibility or involving hazardous substances. This study presents the development of molecularly engineered magneto-fluorescent microrobots based on the push-pull quinonoids by incorporating magnetic nanoparticles using a reprecipitation approach with the aim of detecting high-energy explosives and antibiotics in aqueous environments. The magnetic components in the microrobots offer remotely controlled navigability toward the intended target areas under the guidance of external magnetic fields. Upon interactions with either explosives (picric acid) or antibiotics (tetracycline), the microrobots' intrinsic fluorescence switches to a "fluorescence off" state, enabling material-based intelligence for sensing applications. The molecular-level interactions that underlie "on-off" fluorescence state switching upon engagement with target molecules are elucidated through extensive spectroscopy, microscopy, and X-ray diffraction analyses. The microrobots' selectivity toward target molecules is achieved by designing microrobots with amine functionalities capable of intermolecular hydrogen bonding with the acidic hydroxyl group of picric acid, leading to the formation of water-soluble charge transfer picrate complexes through proton transfer. Similarly, proton transfer interactions play a key role in tetracycline detection. The selective fluorescence switching performance of microrobots in fluidic channel experiments illustrates their selective sensing intelligence for target molecules in an externally controlled manner, highlighting their promising characteristics for sensing applications in real-world scenarios.
- Keywords
- charge transfer complexes, environmental monitoring, fluorescence sensing, magnetic microrobots, organic pollutants,
- MeSH
- Anti-Bacterial Agents * analysis MeSH
- Fluorescent Dyes * chemistry MeSH
- Magnetite Nanoparticles * chemistry MeSH
- Picrates MeSH
- Tetracycline * analysis MeSH
- Water chemistry MeSH
- Explosive Agents * analysis MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents * MeSH
- Fluorescent Dyes * MeSH
- Magnetite Nanoparticles * MeSH
- picric acid MeSH Browser
- Picrates MeSH
- Tetracycline * MeSH
- Water MeSH
- Explosive Agents * MeSH