Nejvíce citovaný článek - PubMed ID 37634049
Hydrogenotrophic methanogenesis is the key process in the obligately syntrophic consortium of the anaerobic ameba Pelomyxa schiedti
The association between anaerobic ciliates and methanogenic archaea has been recognized for over a century. Nevertheless, knowledge of these associations is limited to a few ciliate species, and so the identification of patterns of host-symbiont specificity has been largely speculative. In this study, we integrated microscopy and genetic identification to survey the methanogenic symbionts of 32 free-living anaerobic ciliate species, mainly from the order Metopida. Based on Sanger and Illumina sequencing of the 16S rRNA gene, our results show that a single methanogenic symbiont population, belonging to Methanobacterium, Methanoregula, or Methanocorpusculum, is dominant in each host strain. Moreover, the host's taxonomy (genus and above) and environment (i.e. endobiotic, marine/brackish, or freshwater) are linked with the methanogen identity at the genus level, demonstrating a strong specificity and fidelity in the association. We also established cultures containing artificially co-occurring anaerobic ciliate species harboring different methanogenic symbionts. This revealed that the host-methanogen relationship is stable over short timescales in cultures without evidence of methanogenic symbiont exchanges, although our intraspecific survey indicated that metopids also tend to replace their methanogens over longer evolutionary timescales. Therefore, anaerobic ciliates have adapted a mixed transmission mode to maintain and replace their methanogenic symbionts, allowing them to thrive in oxygen-depleted environments.
- Klíčová slova
- anaerobiosis, archaea, endosymbionts, methane, symbiosis, syntrophy, transmission mode,
- MeSH
- anaerobióza MeSH
- Ciliophora * klasifikace genetika fyziologie MeSH
- DNA archebakterií genetika MeSH
- ekosystém * MeSH
- fylogeneze * MeSH
- methan * metabolismus MeSH
- RNA ribozomální 16S * genetika MeSH
- sekvenční analýza DNA MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA archebakterií MeSH
- methan * MeSH
- RNA ribozomální 16S * MeSH
The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.
- MeSH
- Eukaryota * genetika MeSH
- fylogeneze MeSH
- genomika MeSH
- mitochondrie genetika MeSH
- Oxymonadida * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to non-methanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods, suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological niches provided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages.
- Klíčová slova
- Bathyarchaeia, Nitrososphaerales, archaea, cockroaches, gut microbiota, methanogens, millipedes, termites,
- Publikační typ
- časopisecké články MeSH