Most cited article - PubMed ID 38087904
Thermal stability of amorphous nimesulide: from glass formation to crystal growth and thermal degradation
Thermokinetic characterization of amorphous carbamazepine was performed utilizing non-isothermal differential scanning calorimetry (DSC) and thermogravimetry (TGA). Structural relaxation of the amorphous matrix was described in terms of the Tool-Narayanaswamy-Moynihan model with the following parameters: Δh* ≈ 200-300 kJ·mol-1, β = 0.57, x = 0.44. The crystallization of the amorphous phase was modeled using complex Šesták-Berggren kinetics, which incorporates temperature-dependent activation energy and degree of autocatalysis. The activation energy of the crystal growth was determined to be >320 kJ·mol-1 at the glass transition temperature (Tg). Owing to such a high value, the amorphous carbamazepine is stable at Tg, allowing for extensive processing of the amorphous phase (e.g., self-healing of the quench-induced mechanical defects or internal stress). A discussion was conducted regarding the converse relation between the activation energies of relaxation and crystal growth, which is possibly responsible for the absence of sub-Tg crystal growth modes. The high-temperature thermal decomposition of carbamazepine proceeds via multistep kinetics, identically in both an inert and an oxidizing atmosphere. A complex reaction mechanism, consisting of a series of consecutive and competing reactions, was proposed to explain the second decomposition step, which exhibited a temporary mass increase. Whereas a negligible degree of carbamazepine degradation was predicted for the temperature characteristic of the pharmaceutical hot-melt extrusion (~150 °C), the degradation risk during the pharmaceutical 3D printing was calculated to be considerably higher (1-2% mass loss at temperatures 190-200 °C).
- Keywords
- carbamazepine, crystal growth, structural relaxation, thermal decomposition,
- MeSH
- Calorimetry, Differential Scanning MeSH
- Carbamazepine * chemistry MeSH
- Kinetics MeSH
- Crystallization MeSH
- Temperature MeSH
- Thermogravimetry MeSH
- Transition Temperature MeSH
- Hot Temperature MeSH
- Phase Transition * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carbamazepine * MeSH
Non-isothermal differential scanning calorimetry (DSC) and Raman microscopy were used to study the crystallization behavior of the 20-50 μm amorphous nifedipine (NIF) powder. In particular, the study was focused on the diffusionless glass-crystal (GC) growth mode occurring below the glass transition temperature (Tg). The exothermic signal associated with the GC growth was indeed directly and reproducibly recorded at heating rates q+ ≤ 0.5 °C·min-1. During the GC growth, the αp polymorphic phase was exclusively formed, as confirmed via Raman microscopy. In addition to the freshly prepared NIF samples, the crystallization of the powders annealed for 7 h at 20 °C was also monitored-approx. 50-60% crystallinity was achieved. For the annealed NIF powders, the confocal Raman microscopy verified a proportional absence of the crystalline phase on the sample surface (indicating its dominant formation along the internal micro-cracks, which is characteristic of the GC growth). All DSC data were modeled in terms of the solid-state kinetic equation paired with the autocatalytic model; the kinetic complexity was described via reaction mechanism based on the overlap of 3-4 independent processes. The kinetic trends associated with decreasing q+ were identified, confirming the temperature-dependent kinetic behavior, and used to calculate a theoretical kinetic prediction conformable to the experimentally performed 7 h annealing at 20 °C. The theoretical model slightly underestimated the true extent of the GC growth, predicting the crystallinity to be 35-40% after 7 h (such accuracy is still extremely good in comparison with the standard kinetic approaches nowadays). Further research in the field of kinetic analysis should thus focus on the methodological ways of increasing the accuracy of considerably extrapolated kinetic predictions.
- Keywords
- DSC, GC growth, Raman microscopy, amorphous nifedipine, kinetic prediction,
- Publication type
- Journal Article MeSH
The particle size-dependent processes of structural relaxation and crystal growth in amorphous nifedipine were studied by means of non-isothermal differential scanning calorimetry (DSC) and Raman microscopy. The enthalpy relaxation was described in terms of the Tool-Narayanaswamy-Moynihan model, with the relaxation motions exhibiting the activation energy of 279 kJ·mol-1 for the temperature shift, but with a significantly higher value of ~500 kJ·mol-1 being obtained for the rapid transition from the glassy to the undercooled liquid state (the latter is in agreement with the activation energy of the viscous flow). This may suggest different types of relaxation kinetics manifesting during slow and rapid heating, with only a certain portion of the relaxation motions occurring that are dependent on the parameters of a given temperature range and time frame. The DSC-recorded crystallization was found to be complex, consisting of four sub-processes: primary crystal growth of αp and βp polymorphs, enantiotropic βp → βp' transformation, and βp/βp' → αp recrystallization. Overall, nifedipine was found to be prone to the rapid glass-crystal growth that occurs below the glass transition temperature; a tendency of low-temperature degradation of the amorphous phase markedly increased with decreasing particle size (the main reason being the increased number of surface and bulk micro-cracks and mechanically induced defects). The activation energies of the DSC-monitored crystallization processes varied in the 100-125 kJ·mol-1 range, which is in agreement with the microscopically measured activation energies of crystal growth. Considering the potential correlations between the structural relaxation and crystal growth processes interpreted within the Transition Zone Theory, a certain threshold in the complexity and magnitude of the cooperating regions (as determined from the structural relaxation) may exist, which can lead to a slow-down of the crystal growth if exceeded.
- Keywords
- DSC, Raman microscopy, amorphous nifedipine, crystal growth, structural relaxation,
- Publication type
- Journal Article MeSH
The processes of structural relaxation, crystal growth, and thermal decomposition were studied for amorphous griseofulvin (GSF) by means of thermo-analytical, microscopic, spectroscopic, and diffraction techniques. The activation energy of ~395 kJ·mol-1 can be attributed to the structural relaxation motions described in terms of the Tool-Narayanaswamy-Moynihan model. Whereas the bulk amorphous GSF is very stable, the presence of mechanical defects and micro-cracks results in partial crystallization initiated by the transition from the glassy to the under-cooled liquid state (at ~80 °C). A key aspect of this crystal growth mode is the presence of a sufficiently nucleated vicinity of the disrupted amorphous phase; the crystal growth itself is a rate-determining step. The main macroscopic (calorimetrically observed) crystallization process occurs in amorphous GSF at 115-135 °C. In both cases, the common polymorph I is dominantly formed. Whereas the macroscopic crystallization of coarse GSF powder exhibits similar activation energy (~235 kJ·mol-1) as that of microscopically observed growth in bulk material, the activation energy of the fine GSF powder macroscopic crystallization gradually changes (as temperature and/or heating rate increase) from the activation energy of microscopic surface growth (~105 kJ·mol-1) to that observed for the growth in bulk GSF. The macroscopic crystal growth kinetics can be accurately described in terms of the complex mechanism, utilizing two independent autocatalytic Šesták-Berggren processes. Thermal decomposition of GSF proceeds identically in N2 and in air atmospheres with the activation energy of ~105 kJ·mol-1. The coincidence of the GSF melting temperature and the onset of decomposition (both at 200 °C) indicates that evaporation may initiate or compete with the decomposition process.
- Keywords
- DSC, amorphous griseofulvin, crystal growth, particle size, structural relaxation,
- Publication type
- Journal Article MeSH