Nejvíce citovaný článek - PubMed ID 38566182
JAK/STAT mediated insulin resistance in muscles is essential for effective immune response
During parasitoid wasp infection, activated immune cells of Drosophila melanogaster larvae release adenosine to conserve nutrients for immune response. S-adenosylmethionine (SAM) is a methyl group donor for most methylations in the cell and is synthesized from methionine and ATP. After methylation, SAM is converted to S-adenosylhomocysteine, which is further metabolized to adenosine and homocysteine. Here, we show that the SAM transmethylation pathway is up-regulated during immune cell activation and that the adenosine produced by this pathway in immune cells acts as a systemic signal to delay Drosophila larval development and ensure sufficient nutrient supply to the immune system. We further show that the up-regulation of the SAM transmethylation pathway and the efficiency of the immune response also depend on the recycling of adenosine back to ATP by adenosine kinase and adenylate kinase. We therefore hypothesize that adenosine may act as a sensitive sensor of the balance between cell activity, represented by the sum of methylation events in the cell, and nutrient supply. If the supply of nutrients is insufficient for a given activity, adenosine may not be effectively recycled back into ATP and may be pushed out of the cell to serve as a signal to demand more nutrients.
When confronted with an infection, immune cells are rapidly activated to fight the threat. However, like all cells, they require energy to act. While most cells reduce their activity when nutrients are scarce, the immune system cannot afford to do so, as halting its response could put the entire body at risk from infection. It is not clear how immune cells manage this complex nutritional budgeting. Previous studies of fruit fly larvae infected with a parasitoid wasp revealed that immune cells secure extra energy by releasing a molecule called adenosine. This slows the metabolism of non-immune tissues, leaving more nutrients available for immune cells. However, the exact mechanism that immune cells use to produce adenosine remained uncertain. To further examine this process, Nedbalova et al. – who are part of the research group that carried out the previous work – extracted activated immune cells from a parasitoid-infected larva and fed them a labelled amino acid. Tracing this label revealed an increase in the number of chemical units known as methyl groups that had been added to molecules within the cell. This process, known as methylation, can regulate metabolic activity within cells and produces adenosine as a byproduct. Further genetic studies showed that if nutrient supplies were sufficient, the immune cells recycled this adenosine back into ATP, the body’s main energy currency. This suggests that if there were not enough nutrients to do this, the excess adenosine would slow the metabolism of non-immune cells, therefore securing more nutrients for the immune cells. Therefore, Nedbalova et al. hypothesise that these two processes could form the basis of a feedback mechanism that allows the immune cells to regulate their energy demands. Taken together, the findings suggest that adenosine may act as a sensor to reflect immune activity, with it being released when the cells are stimulated and recycled if they have enough energy. This hypothesis still requires further testing but, as adenosine pathways are present across all organisms, it could have implications for many physiological and disease-related processes.
- Klíčová slova
- D. melanogaster, S-adenosylhomocysteinase, SAM transmethylation pathway, adenosine kinase, adenosine signaling, adenylate kinase, biochemistry, chemical biology, immunology, inflammation, privileged immunity,
- MeSH
- adenosin * metabolismus MeSH
- adenosinkinasa metabolismus MeSH
- adenosintrifosfát * metabolismus MeSH
- Drosophila melanogaster * imunologie parazitologie metabolismus růst a vývoj MeSH
- larva imunologie metabolismus parazitologie růst a vývoj MeSH
- metylace MeSH
- S-adenosylmethionin * metabolismus MeSH
- sršňovití MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosin * MeSH
- adenosinkinasa MeSH
- adenosintrifosfát * MeSH
- S-adenosylmethionin * MeSH
Cellular encapsulation associated with melanization is a crucial component of the immune response in insects, particularly against larger pathogens. The infection of a Drosophila larva by parasitoid wasps, like Leptopilina boulardi, is the most extensively studied example. In this case, the encapsulation and melanization of the parasitoid embryo is linked to the activation of plasmatocytes that attach to the surface of the parasitoid. Additionally, the differentiation of lamellocytes that encapsulate the parasitoid, along with crystal cells, is accountable for the melanization process. Encapsulation and melanization lead to the production of toxic molecules that are concentrated in the capsule around the parasitoid and, at the same time, protect the host from this toxic immune response. Thus, cellular encapsulation and melanization represent primarily a metabolic process involving the metabolism of immune cell activation and differentiation, the production of toxic radicals, but also the production of melanin and antioxidants. As such, it has significant implications for host physiology and systemic metabolism. Proper regulation of metabolism within immune cells, as well as at the level of the entire organism, is therefore essential for an efficient immune response and also impacts the health and overall fitness of the organism that survives. The purpose of this "perspective" article is to map what we know about the metabolism of this type of immune response, place it in the context of possible implications for host physiology, and highlight open questions related to the metabolism of this important insect immune response.
- Klíčová slova
- ROS, encapsulation, hemocyte, immunometabolism, lamellocyte, melanization, parasitoid wasp, phenoloxidase,
- MeSH
- buněčná diferenciace MeSH
- Drosophila melanogaster MeSH
- Drosophila * MeSH
- larva MeSH
- sršňovití * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH