Nejvíce citovaný článek - PubMed ID 38577975
Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides
The preparation of specifically iodine-125 (125I)-labeled peptides of high purity and specific activity represents a key tool for the detailed characterization of their binding properties in interaction with their binding partners. Early synthetic methods for the incorporation of iodine faced challenges such as harsh reaction conditions, the use of strong oxidants and low reproducibility. Herein, we review well-established radiolabeling strategies available to incorporate radionuclide into a protein of interest, and our long-term experience with a mild, simple and generally applicable technique of 125I late-stage-labeling of biomolecules using the Pierce iodination reagent for the direct solid-phase oxidation of radioactive iodide. General recommendations, tips, and details of optimized chromatographic conditions to isolate pure, specifically 125I-mono-labeled biomolecules are illustrated on a diverse series of (poly)peptides, ranging up to 7.6 kDa and 67 amino acids (aa). These series include peptides that contain at least one tyrosine or histidine residue, along with those featuring disulfide crosslinking or lipophilic derivatization. This mild and straightforward late-stage-labeling technique is easily applicable to longer and more sensitive proteins, as demonstrated in the cases of the insulin-like growth factor binding protein-3 (IGF-BP-3) (29 kDa and 264 aa) and the acid-labile subunit (ALS) (93 kDa and 578 aa).
Alzheimer's disease (AD) is the most common form of dementia. Characterized by progressive neurodegeneration, AD typically begins with mild cognitive decline escalating to severe impairment in communication and responsiveness. It primarily affects cerebral regions responsible for cognition, memory, and language processing, significantly impeding the functional independence of patients. With nearly 50 million dementia cases worldwide, a number expected to triple by 2050, the need for effective treatments is more urgent than ever. Recent insights into the association between obesity, type 2 diabetes mellitus, and neurodegenerative disorders have led to the development of promising treatments involving antidiabetic and anti-obesity agents. One such novel promising candidate for addressing AD pathology is a lipidized analogue of anorexigenic peptide called prolactin-releasing peptide (palm11-PrRP31). Interestingly, anorexigenic and orexigenic peptides have opposite effects on food intake regulation, however, both types exhibit neuroprotective properties. Recent studies have also identified ghrelin, an orexigenic peptide, as a potential neuroprotective agent. Hence, we employed both anorexigenic and orexigenic compounds to investigate the common mechanisms underpinning their neuroprotective effects in a triple transgenic mouse model of AD (3xTg-AD mouse model) combining amyloid-beta (Aβ) pathology and Tau pathology, two hallmarks of AD. We treated 3xTg-AD mice for 4 months with two stable lipidized anorexigenic peptide analogues - palm11-PrRP31, and liraglutide, a glucagon-like peptide 1 (GLP-1) analogue - as well as Dpr3-ghrelin, a stable analogue of the orexigenic peptide ghrelin, and using the method of immunohistochemistry and western blot demonstrate the effects of these compounds on the development of AD-like pathology in the brain. Palm11-PrRP31, Dpr3-ghrelin, and liraglutide reduced intraneuronal deposits of Aβ plaque load in the hippocampi and amygdalae of 3xTg-AD mice. Palm11-PrRP31 and Dpr3-ghrelin reduced microgliosis in the hippocampi, amygdalae, and cortices of 3xTg-AD mice. Palm11-PrRP31 and liraglutide reduced astrocytosis in the amygdalae of 3xTg-AD mice. We propose that these peptides are involved in reducing inflammation, a common mechanism underlying their therapeutic effects. This is the first study to demonstrate improvements in AD pathology following the administration of both orexigenic and anorexigenic compounds, highlighting the therapeutic potential of food intake-regulating peptides in neurodegenerative disorders.
- Klíčová slova
- 3xTg-AD mice, Alzheimer’s disease, Anorexigenic peptide analogues, Neuroinflammation, Orexigenic peptide analogues,
- MeSH
- Alzheimerova nemoc * farmakoterapie patologie genetika metabolismus MeSH
- ghrelin * farmakologie terapeutické užití MeSH
- hormon uvolňující prolaktin * farmakologie terapeutické užití analogy a deriváty MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- neurozánětlivé nemoci * farmakoterapie patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ghrelin * MeSH
- hormon uvolňující prolaktin * MeSH