Nejvíce citovaný článek - PubMed ID 38648108
Novel antimicrobial agents are urgently needed to combat antimicrobial resistance from multidrug-resistant organisms. Actinobacteria are key sources of bioactive metabolites with diverse biological activities. Despite their contributions to drug discovery, the process from strain identification to drug manufacturing faces many challenges, especially the rediscovery of known compounds. Recent technological and scientific advancements have accelerated drug development. Efforts to isolate and screen rare actinobacterial species could yield novel bioactive compounds. This review summarizes techniques for selectively isolating rare actinobacteria, improving bioactive metabolite production, and discovering potential strains. Notably, new genomic strategies and new discoveries regarding spectroscopic signature-based bioactive natural products containing specific structural motifs are also discussed. Furthermore, this review updates the compounds derived from rare actinobacteria and their biological applications.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
A series of amides of selected plant triterpenoids, moronic acid and morolic acid, with the tripeptides MAG and GAM, was designed and synthesized. Two required tripeptides 5 and 10 were synthesized by a step-wise chain elongation of the ethyl esters of either glycine or l-methionine at their N-terminus using Boc-protected amino acids in each step. The tripeptides 5 and 10 were used for the synthesis of 13-23, the derivatives of moronic acid (11) and morolic acid (12), to get a series of amide derivatives of the less frequently studied triterpenoids 11 and 12. The target compounds, and their intermediates, were subjected to an investigation of their antimicrobial, antiviral and cytotoxic activity. Selectivity of the pharmacological effects was found. Generally, the target compounds inhibited only the G+ microorganisms. Compound 16 inhibited Staphylococcus aureus (I = 99.6%; c = 62.5 μM) and Enterococcus faecalis (I = 85%; c = 250 μM). Several compounds showed moderate antiviral effects, both anti-HIV-1, 19 (EC50 = 57.0 ± 4.1 μM, CC50 > 100 μM), 20 (EC50 = 17.8 ± 2.1 μM, CC50 = 41.0 ± 5.2 μM) and 23 (EC50 = 12.6 ± 0.82 μM, CC50 = 38.0 ± 4.2 μM), and anti-HSV-1, 22 (EC50 = 27.7 ± 3.5 μM, CC50 > 100 μM) and 23 (EC50 = 30.9 ± 3.3 μM, CC50 > 100 μM). The target compounds showed no cytotoxicity in cancer cells, however, several of their intermediates were cytotoxic. Compound 21 showed cytotoxicity in HeLa (IC50 = 7.9 ± 2.1 μM), G-361 (IC50 = 8.0 ± 0.6 μM) and MCF7 (IC50 = 8.6 ± 0.2 μM) cancer cell lines, while being non-toxic in normal fibroblasts (BJ; IC50 > 50 μM).
- Publikační typ
- časopisecké články MeSH