Most cited article - PubMed ID 39336354
Analysis of Thermophysical Properties of Electro Slag Remelting and Evaluation of Metallographic Cleanliness of Steel
Given by their low weight and favorable combination of properties, Al-Fe-Si-based intermetallic and duplex alloys are widely used in mechanical engineering. The use of aluminum scrap for their production imparts the necessity for a thorough study of the impacts of presence of impurity/alloying elements on the phase composition. By this reason, individual impacts of the impurity/alloying elements present in the majority of commercial alloys on phase compositions of the alloys were studied herein. Particular emphasis was on the formation of the α phase and features of the α↔β transformation, as well as on their effects on the solidus, liquidus, and phase transformation temperatures. Modeling was used to study the synergistic effect of the simultaneous introduction of 12 elements into aluminum. According to the results, magnesium, copper, and nickel have a tendency to form combined intermetallic phases, and beryllium, as a structurally free element, forms precipitates even at minimum concentrations. Verification of the modelled results was performed using a real alloy prepared experimentally from commercially available raw materials. The comparison of the results provided by computer modeling and the actual phase composition showed sufficient agreement. The herein acquired results contribute to a deeper understanding of the features of phase transitions occurring during alloying of aluminum alloys and will also be useful for predicting microstructures and phase compositions of intermetallic alloys. This research has potential to inspire further development in materials science and engineering.
- Keywords
- AlFeSi, diagrams phase transformation, intermetallic phases, microstructure, simulation and modeling,
- Publication type
- Journal Article MeSH
The purity of a steel is an important factor influencing the quality of the final products. Therefore, it is important to optimize the existing and develop new steelmaking technologies that affect the resulting purity. Electro slag remelting is a technology of tertiary metallurgy, which can advantageously be used to fabricate high quality steels. The study presents selected theoretical aspects of oxide systems and their specific influences on effectiveness of the electro slag remelting technology. The aim of this work was to experimentally analyze the purity of a tool steel fabricated by electro slag remelting using two different oxide systems (fused slags). The core of the study is the determination of the overall presence of elements in the steels, a thorough investigation of the presence of (not only) oxide-based inclusions within the investigated tool steel, and a detailed analysis of their chemical composition, including the size of these non-metallic inclusions, using energy dispersive X-ray (EDX) on the scanning electron microscope (SEM). Last but not least, the determination of the modification of the occurring non-metallic inclusions and verification of the experimentally acquired results as well as the calculation of the liquid and solid temperature and the calculation of the viscosity of the slags using the FactSage calculation software was performed. The results showed that the used slag influenced especially the occurrence of Mg and Al-based oxide inclusions. The CaS-type inclusions were present within all of the examined samples. The slag type influenced not only the typical morphology and size of the inclusions (especially of the CaS type), but also the tendency of the steel to exhibit localized corrosion when exposed to the ambient environment. This research can contribute to a better understanding of the effect of oxidation systems on the resulting purity and properties of ESR steels, thereby advancing the production of tool steels with higher quality and performance requirements.
- Keywords
- chemical composition, electro slag remelting, non-metallic inclusion, slag, thermodynamics,
- Publication type
- Journal Article MeSH