Nejvíce citovaný článek - PubMed ID 32604904
Texture and Differential Stress Development in W/Ni-Co Composite after Rotary Swaging
Given by their low weight and favorable combination of properties, Al-Fe-Si-based intermetallic and duplex alloys are widely used in mechanical engineering. The use of aluminum scrap for their production imparts the necessity for a thorough study of the impacts of presence of impurity/alloying elements on the phase composition. By this reason, individual impacts of the impurity/alloying elements present in the majority of commercial alloys on phase compositions of the alloys were studied herein. Particular emphasis was on the formation of the α phase and features of the α↔β transformation, as well as on their effects on the solidus, liquidus, and phase transformation temperatures. Modeling was used to study the synergistic effect of the simultaneous introduction of 12 elements into aluminum. According to the results, magnesium, copper, and nickel have a tendency to form combined intermetallic phases, and beryllium, as a structurally free element, forms precipitates even at minimum concentrations. Verification of the modelled results was performed using a real alloy prepared experimentally from commercially available raw materials. The comparison of the results provided by computer modeling and the actual phase composition showed sufficient agreement. The herein acquired results contribute to a deeper understanding of the features of phase transitions occurring during alloying of aluminum alloys and will also be useful for predicting microstructures and phase compositions of intermetallic alloys. This research has potential to inspire further development in materials science and engineering.
- Klíčová slova
- AlFeSi, diagrams phase transformation, intermetallic phases, microstructure, simulation and modeling,
- Publikační typ
- časopisecké články MeSH
The impact of manufacturing strategies on the development of residual stresses in Dievar steel is presented. Two fabrication methods were investigated: conventional ingot casting and selective laser melting as an additive manufacturing process. Subsequently, plastic deformation in the form of hot rotary swaging at 900 °C was applied. Residual stresses were measured using neutron diffraction. Microstructural and phase analysis, precipitate characterization, and hardness measurement-carried out to complement the investigation-showed the microstructure improvement by rotary swaging. The study reveals that the manufacturing method has a significant effect on the distribution of residual stresses in the bars. The results showed that conventional ingot casting resulted in low levels of residual stresses (up to ±200 MPa), with an increase in hardness after rotary swaging from 172 HV1 to 613 HV1. SLM-manufactured bars developed tensile hoop and axial residual stresses in the vicinity of the surface and large compressive axial stresses (-600 MPa) in the core due to rapid cooling. The subsequent thermomechanical treatment via rotary swaging effectively reduced both the surface tensile (to approximately +200 MPa) and the core compressive residual stresses (to -300 MPa). Moreover, it resulted in a predominantly hydrostatic stress character and a reduction in von Mises stresses, offering relatively favorable residual stress characteristics and, therefore, a reduction in the risk of material failure. In addition to the significantly improved stress profile, rotary swaging contributed to a fine grain (3-5 µm instead of 10-15 µm for the conventional sample) and increased the hardness of the SLM samples from 560 HV1 to 606 HV1. These insights confirm the utility of rotary swaging as a post-processing technique that not only reduces residual stresses but also improves the microstructural and mechanical properties of additively manufactured components.
- Klíčová slova
- Dievar, SLM, additive manufacturing, hot work tool steel, neutron diffraction, residual stress, rotary swaging, selective laser melting, tool steel,
- Publikační typ
- časopisecké články MeSH
Among the main benefits of powder-based materials is the possibility of combining different constituents to achieve enhanced properties of the fabricated bulk material. The presented study characterizes the micro- and sub-structures and related mechanical properties of ferritic steel strengthened with a fine dispersion of nano-sized Y2O3 oxide particles. Unlike the typical method of preparation via rolling, the material presented herein was fabricated by direct consolidation from a mixture of powders using the versatile method of hot rotary swaging. The mechanical properties were evaluated at room temperature and also at 1300 °C to document the suitability of the prepared steel for high-temperature applications. The results showed that the imposed shear strain, i.e., swaging ratio, is a crucial parameter influencing the microstructure and, thus, material behavior. The workpiece subjected to the swaging ratio of 1.4 already exhibited a sufficiently consolidated structure with ultra-fine grains and featured high room-temperature microhardness values (up to 690 HV0.5), as well as a relatively high maximum flow stress (~88 MPa) when deformed at the temperature of 1300 °C with the strain rate of 0.5 s-1. However, the dispersion of oxides within this sample exhibited local inhomogeneities. Increasing the swaging ratio to 2.5 substantially contributed to the homogenization of the distribution of the Y2O3 oxide particles, which resulted in increased homogeneity of mechanical properties (lower deviations from the average values), but their lower absolute values due to the occurrence of nucleating nano-sized recrystallized grains.
- Klíčová slova
- direct consolidation, microhardness, microstructure, oxide dispersion strengthening, rotary swaging,
- Publikační typ
- časopisecké články MeSH
Rotary swaging is an industrially applicable intensive plastic deformation method. Due to its versatility, it is popular, especially in the automotive industry. Similar to the well-known methods of severe plastic deformation (SPD), rotary swaging imparts high shear strain into the swaged materials and thus introduces grain refinement down to a very fine, even ultra-fine, level. However, contrary to SPD methods, one of the primary characteristics of which is that they retain the shapes and dimensions of the processed sample, rotary swaging enables the imparting of required shapes and dimensions of workpieces (besides introducing structure refinement and the consequent enhancement of properties and performance). Therefore, under optimized conditions, swaging can be used to process workpieces of virtually any metallic material with theoretically any required dimensions. The main aim of this review is to present the principle of the rotary swaging method and its undeniable advantages. The focus is primarily on assessing its pros and cons by evaluating the imparted microstructures.
- Klíčová slova
- grain size, intensive plastic deformation, microstructure, rotary swaging,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Rotary swaging is a promising technique for the fabrication of clad Cu/Al composites. Residual stresses appearing during the processing of a special arrangement of Al filaments within the Cu matrix and the influence of the bar reversal between the passes were studied by (i) neutron diffraction using a novel evaluation procedure for pseudo-strain correction and (ii) a finite element method simulation. The initial study of the stress differences in the Cu phase allowed us to infer that the stresses around the central Al filament are hydrostatic when the sample is reversed during the passes. This fact enabled the calculation of the stress-free reference and, consequently, the analysis of the hydrostatic and deviatoric components. Finally, the stresses with the von Mises relation were calculated. Hydrostatic stresses (far from the filaments) and axial deviatoric stresses are zero or compressive for both reversed and non-reversed samples. The reversal of the bar direction slightly changes the overall state within the region of high density of Al filaments, where hydrostatic stresses tend to be tensile, but it seems to be advantageous for avoiding plastification in the regions without Al wires. The finite element analysis revealed the presence of shear stresses; nevertheless, stresses calculated with the von Mises relation show similar trends in the simulation and in the neutron measurements. Microstresses are suggested as a possible reason for the large width of the neutron diffraction peak in the measurement of the radial direction.
- Klíčová slova
- aluminum, composite, copper, finite element simulation, neutron diffraction, residual stress, rotary swaging, severe plastic deformation, von Mises,
- Publikační typ
- časopisecké články MeSH