Nejvíce citovaný článek - PubMed ID 7639016
Search for optimal parent for recombinant vaccinia virus vaccines. Study of three vaccinia virus vaccinal strains and several virus lines derived from them
Smallpox vaccine based on live, replicating vaccinia virus (VACV) is associated with several potentially serious and deadly complications. Consequently, a new generation of vaccine based on non-replicating Modified vaccinia virus Ankara (MVA) has been under clinical development. MVA seems to induce good immune responses in blood tests, but it is impossible to test its efficacy in vivo in human. One of the serious complications of the replicating vaccine is eczema vaccinatum (EV) occurring in individuals with atopic dermatitis (AD), thus excluding them from all preventive vaccination schemes. In this study, we first characterized and compared development of eczema vaccinatum in different mouse strains. Nc/Nga, Balb/c and C57Bl/6J mice were epicutaneously sensitized with ovalbumin (OVA) or saline control to induce signs of atopic dermatitis and subsequently trans-dermally (t.d.) immunized with VACV strain Western Reserve (WR). Large primary lesions occurred in both mock- and OVA-sensitized Nc/Nga mice, while they remained small in Balb/c and C57Bl/6J mice. Satellite lesions developed in both mock- and OVA-sensitized Nc/Nga and in OVA-sensitized Balb/c mice with the rate 40-50%. Presence of mastocytes and eosinophils was the highest in Nc/Nga mice. Consequently, we have chosen Nc/Nga mice as a model of AD/EV and tested efficacy of MVA and Dryvax vaccinations against a lethal intra-nasal (i.n.) challenge with WR, the surrogate of smallpox. Inoculation of MVA intra-muscularly (i.m.) or t.d. resulted in no lesions, while inoculation of Dryvax t.d. yielded large primary and many satellite lesions similar to WR. Eighty three and 92% of mice vaccinated with a single dose of MVA i.m. or t.d., respectively, survived a lethal i.n. challenge with WR without any serious illness, while all Dryvax-vaccinated animals survived. This is the first formal prove of protective immunity against a lethal poxvirus challenge induced by vaccination with MVA in an atopic organism.
- MeSH
- atopická dermatitida imunologie patologie MeSH
- imunizace MeSH
- imunoglobulin E krev imunologie MeSH
- imunoglobulin G krev imunologie MeSH
- infekce vyvolané poxviry imunologie mortalita prevence a kontrola MeSH
- Kaposiho erupce variceliformní etiologie patologie MeSH
- kůže patologie MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- neutralizující protilátky krev imunologie MeSH
- protilátky virové krev imunologie MeSH
- vakcína proti pravým neštovicím imunologie MeSH
- virus vakcinie genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- imunoglobulin E MeSH
- imunoglobulin G MeSH
- neutralizující protilátky MeSH
- protilátky virové MeSH
- vakcína proti pravým neštovicím MeSH
We constructed recombinant vaccinia viruses (VACVs) coexpressing the insulin-like growth factor-binding protein-3 (IGFBP-3) gene and the fusion gene encoding the SigE7Lamp antigen. The expression of the IGFBP-3 transgene was regulated either by the early H5 promoter or by the synthetic early/late (E/L) promoter. We have shown that IGFBP-3 expression regulated by the H5 promoter yielded higher amount of IGFBP-3 protein when compared with the E/L promoter. The immunization with P13-SigE7Lamp-H5-IGFBP-3 virus was more effective in inhibiting the growth of TC-1 tumors in mice and elicited higher T-cell response against VACV-encoded antigen than the P13-SigE7Lamp-TK(-) control virus. We found that high-level production of IGFBP-3 enhanced virus replication both in vitro and in vivo, resulting in more profound antigen stimulation. Production of IGFBP-3 was associated with a higher adsorption rate of P13-SigE7Lamp-H5-IGFBP-3 to CV-1 cells when compared with P13-SigE7Lamp-TK(-). Intracellular mature virions (IMVs) of the IGFBP-3-expressing virus P13-SigE7Lamp-H5-IGFBP-3 have two structural differences: they incorporate the IGFBP-3 protein and they have elevated phosphatidylserine (PS) exposure on outer membrane that could result in increased uptake of IMVs by macropinocytosis. The IMV PS content was measured by flow cytometry using microbeads covered with immobilized purified VACV virions.
- MeSH
- antigeny virové imunologie MeSH
- IGFBP-3 genetika imunologie MeSH
- imunizace metody MeSH
- lidský papilomavirus 16 genetika imunologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- Papillomavirus E7 - proteiny genetika imunologie MeSH
- promotorové oblasti (genetika) MeSH
- replikace viru imunologie MeSH
- T-lymfocyty imunologie MeSH
- tvorba protilátek MeSH
- vakcinace metody MeSH
- virové vakcíny imunologie farmakologie MeSH
- virus vakcinie genetika imunologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny virové MeSH
- IGFBP-3 MeSH
- oncogene protein E7, Human papillomavirus type 16 MeSH Prohlížeč
- Papillomavirus E7 - proteiny MeSH
- virové vakcíny MeSH
Viral CC chemokine inhibitor (vCCI) of the clone P13 vaccinia virus (VACV) strain PRAHA lacks eight amino acids in the signal peptide sequence. To study the influence of vCCI on virus biology, a virus with the vCCI gene coding for a prolonged signal sequence was prepared. We found that secreted vCCI attenuated the virus in vivo, and that it correlated with decreased levels of RANTES, eotaxin, TARC, and MDC in the blood in comparison with the parental virus. We determined the influence of vCCI on the CTL response against VACV E3((140-148)) (VGPSNSPTF) and HPV16 E7((49-57)) (RAHYNIVTF) H-2D(b)-restricted epitopes. The examination of the specific CTL response elicited by immunization with the recombinant VACV-expressing tumor-associated HPV16 E7 antigen by IFN-γ ELISPOT showed that the immunogenicity of the recombinant VACV-producing secretory vCCI was similar to that of the parent virus or deletion mutant in the C23L/B29R locus. Immunization with the secretory vCCI-producing recombinant virus has a lower therapeutic anti-tumor effect against TC-1 tumors. Viral CCI downregulated the E7-specific response induced by gene gun immunization with the DNA vaccines pBSC-SigE7 LAMP and pBSC-vCCI. We also observed that the immune response against vCCI elicited by the DNA vaccine did not affect the multiplication of VACV in vivo.
- MeSH
- buněčné linie MeSH
- chemokin CCL17 krev MeSH
- chemokin CCL5 krev MeSH
- chemokiny CC antagonisté a inhibitory krev MeSH
- cytotoxické T-lymfocyty imunologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nádorové supresorové proteiny krev MeSH
- Papillomavirus E7 - proteiny genetika imunologie MeSH
- proteiny ADAM krev MeSH
- protinádorové vakcíny genetika imunologie MeSH
- sekvenční delece MeSH
- syntetické vakcíny genetika imunologie MeSH
- vakcinace MeSH
- virové proteiny genetika metabolismus MeSH
- virové vakcíny imunologie MeSH
- virus vakcinie genetika imunologie patogenita MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ADAM11 protein, human MeSH Prohlížeč
- chemokin CCL17 MeSH
- chemokin CCL5 MeSH
- chemokiny CC MeSH
- nádorové supresorové proteiny MeSH
- oncogene protein E7, Human papillomavirus type 16 MeSH Prohlížeč
- Papillomavirus E7 - proteiny MeSH
- proteiny ADAM MeSH
- protinádorové vakcíny MeSH
- syntetické vakcíny MeSH
- virové proteiny MeSH
- virové vakcíny MeSH
BACKGROUND: Vaccinia virus, one of the best known members of poxvirus family, has a wide host range both in vivo and in vitro. The expression of Flt3 ligand (FL) by recombinant vaccinia virus (rVACV) highly influenced properties of the virus in dependence on the level of expression. RESULTS: High production of FL driven by the strong synthetic promoter decreased the growth of rVACV in macrophage cell line J774.G8 in vitro as well as its multiplication in vivo when inoculated in mice. The inhibition of replication in vivo was mirrored in low levels of antibodies against vaccinia virus (anti-VACV) which nearly approached to the negative serum level in non-infected mice. Strong FL expression changed not only the host range of the recombinant but also the basic protein contents of virions. The major proteins - H3L and D8L - which are responsible for the virus binding to the cells, and 28 K protein that serves as a virulence factor, were changed in the membrane portion of P13-E/L-FL viral particles. The core virion fraction contained multiple larger, uncleaved proteins and a higher amount of cellular proteins compared to the control virus. The overexpression of FL also resulted in its incorporation into the viral core of P13-E/L-FL IMV particles. In contrary to the equimolar ratio of glycosylated and nonglycosylated FL forms found in cells transfected with the expression plasmid, the recombinant virus incorporated mainly the smaller, nonglycosylated FL. CONCLUSIONS: It has been shown that the overexpression of the Flt3L gene in VACV results in the attenuation of the virus in vivo.
- MeSH
- buněčné linie MeSH
- exprese genu * MeSH
- lidé MeSH
- membránové proteiny genetika metabolismus MeSH
- myši MeSH
- replikace viru MeSH
- vakcínie genetika metabolismus virologie MeSH
- virus vakcinie genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- flt3 ligand protein MeSH Prohlížeč
- membránové proteiny MeSH