Most cited article - PubMed ID 8837473
Localization of prophages of serological group B and F on restriction fragments defined in the restriction map of Staphylococcus aureus NCTC 8325
Both temperate and obligately lytic phages have crucial roles in the biology of staphylococci. While superinfection exclusion among closely related temperate phages is a well-characterized phenomenon, the interactions between temperate and lytic phages in staphylococci are not understood. Here, we present a resistance mechanism toward lytic phages of the genus Kayvirus, mediated by the membrane-anchored protein designated PdpSau encoded by Staphylococcus aureus prophages, mostly of the Sa2 integrase type. The prophage accessory gene pdpSau is strongly linked to the lytic genes for holin and ami2-type amidase and typically replaces genes for the toxin Panton-Valentine leukocidin (PVL). The predicted PdpSau protein structure shows the presence of a membrane-binding α-helix in its N-terminal part and a cytoplasmic positively charged C terminus. We demonstrated that the mechanism of action of PdpSau does not prevent the infecting kayvirus from adsorbing onto the host cell and delivering its genome into the cell, but phage DNA replication is halted. Changes in the cell membrane polarity and permeability were observed from 10 min after the infection, which led to prophage-activated cell death. Furthermore, we describe a mechanism of overcoming this resistance in a host-range Kayvirus mutant, which was selected on an S. aureus strain harboring prophage 53 encoding PdpSau, and in which a chimeric gene product emerged via adaptive laboratory evolution. This first case of staphylococcal interfamily phage-phage competition is analogous to some other abortive infection defense systems and to systems based on membrane-destructive proteins. IMPORTANCE Prophages play an important role in virulence, pathogenesis, and host preference, as well as in horizontal gene transfer in staphylococci. In contrast, broad-host-range lytic staphylococcal kayviruses lyse most S. aureus strains, and scientists worldwide have come to believe that the use of such phages will be successful for treating and preventing bacterial diseases. The effectiveness of phage therapy is complicated by bacterial resistance, whose mechanisms related to therapeutic staphylococcal phages are not understood in detail. In this work, we describe a resistance mechanism targeting kayviruses that is encoded by a prophage. We conclude that the defense mechanism belongs to a broader group of abortive infections, which is characterized by suicidal behavior of infected cells that are unable to produce phage progeny, thus ensuring the survival of the host population. Since the majority of staphylococcal strains are lysogenic, our findings are relevant for the advancement of phage therapy.
- Keywords
- Kayvirus, Staphylococcus aureus, abortive infection, bacteriophage evolution, bacteriophage therapy, bacteriophages, cell death, lysogeny, phage resistance, phage therapy,
- MeSH
- Humans MeSH
- Lysogeny MeSH
- Membrane Proteins genetics MeSH
- Prophages * genetics MeSH
- Staphylococcus Phages genetics MeSH
- Staphylococcal Infections * microbiology MeSH
- Staphylococcus aureus genetics MeSH
- Staphylococcus MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Membrane Proteins MeSH
Staphylococcus aureus is a major causative agent of infections associated with hospital environments, where antibiotic-resistant strains have emerged as a significant threat. Phage therapy could offer a safe and effective alternative to antibiotics. Phage preparations should comply with quality and safety requirements; therefore, it is important to develop efficient production control technologies. This study was conducted to develop and evaluate a rapid and reliable method for identifying staphylococcal bacteriophages, based on detecting their specific proteins using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling that is among the suggested methods for meeting the regulations of pharmaceutical authorities. Five different phage purification techniques were tested in combination with two MALDI-TOF MS matrices. Phages, either purified by CsCl density gradient centrifugation or as resuspended phage pellets, yielded mass spectra with the highest information value if ferulic acid was used as the MALDI matrix. Phage tail and capsid proteins yielded the strongest signals whereas the culture conditions had no effect on mass spectral quality. Thirty-seven phages from Myoviridae, Siphoviridae or Podoviridae families were analysed, including 23 siphophages belonging to the International Typing Set for human strains of S. aureus, as well as phages in preparations produced by Microgen, Bohemia Pharmaceuticals and MB Pharma. The data obtained demonstrate that MALDI-TOF MS can be used to effectively distinguish between Staphylococcus-specific bacteriophages.
- Keywords
- Kayvirus, MALDI-MS, Staphylococcus, Viral proteins, bacteriophages, phage therapy,
- MeSH
- Biological Products isolation & purification MeSH
- Chemical Fractionation methods MeSH
- Humans MeSH
- Virus Replication MeSH
- Cluster Analysis MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization * methods MeSH
- Staphylococcus Phages classification metabolism MeSH
- Staphylococcus aureus virology MeSH
- Viral Proteins analysis chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biological Products MeSH
- viron MeSH Browser
- Viral Proteins MeSH
Bacterial species of the genus Staphylococcus known as important human and animal pathogens are the cause of a number of severe infectious diseases. Apart from the major pathogen Staphylococcus aureus, other species until recently considered to be nonpathogenic may also be involved in serious infections. Rapid and accurate identification of the disease-causing agent is therefore prerequisite for disease control and epidemiological surveillance. Modern methods for identification and typing of bacterial species are based on genome analysis and have many advantages compared to phenotypic methods. The genotypic methods currently used in molecular diagnostics of staphylococcal species, particularly of S. aureus, are reviewed. Attention is also paid to new molecular methods with the highest discriminatory power. Efforts made to achieve interlaboratory reproducibility of diagnostic methods are presented.
- MeSH
- Genotype MeSH
- Humans MeSH
- Polymerase Chain Reaction MeSH
- Methicillin Resistance MeSH
- Sequence Analysis, DNA MeSH
- Staphylococcus classification genetics isolation & purification MeSH
- Bacterial Typing Techniques MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH